• Title/Summary/Keyword: 벡터플로우

Search Result 27, Processing Time 0.024 seconds

Motion Vector Recovery Based on Optical Flow for Error Concealment (전송 오류를 은닉하기 위한 옵티컬 플로우 기반의 움직임 벡터 복원)

  • Suh, Jae-Won;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.630-640
    • /
    • 2002
  • The compressed video bitstream is very sensitive to transmission errors. If we lost packet or received with errors during the transmission, not only the current frame will be corrupted, but also errors will propagate to succeeding frames. Error concealment is a data recovery technique that enables the decoder to conceal effects of transmission errors by predicting the lost or corrupted video data from the previously reconstructed error free information. Motion vection recovery and motion compensation with the estimated motion vector is a good approach to conceal the corrupted macroblock data. In this paper, we prove that it is reasonable to use the estimated motion vector to conceal the lost macroblock by providing macroblock distortion models. After we propose a new motion vector recovery algorithm based on optical flow fields, we compare its performance to those of conventional error concealment methods. The proposed algorithm has smaller computational complexity than those of conventional algorithms.

Hand Motion Gesture Recognition at A Distance with Skin-color Detection and Feature Points Tracking (피부색 검출 및 특징점 추적을 통한 원거리 손 모션 제스처 인식)

  • Yun, Jong-Hyun;Kim, Sung-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.594-596
    • /
    • 2012
  • 본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.

Improvements for Atmospheric Motion Vectors Algorithm Using First Guess by Optical Flow Method (옵티컬 플로우 방법으로 계산된 초기 바람 추정치에 따른 대기운동벡터 알고리즘 개선 연구)

  • Oh, Yurim;Park, Hyungmin;Kim, Jae Hwan;Kim, Somyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.763-774
    • /
    • 2020
  • Wind data forecasted from the numerical weather prediction (NWP) model is generally used as the first-guess of the target tracking process to obtain the atmospheric motion vectors(AMVs) because it increases tracking accuracy and reduce computational time. However, there is a contradiction that the NWP model used as the first-guess is used again as the reference in the AMVs verification process. To overcome this problem, model-independent first guesses are required. In this study, we propose the AMVs derivation from Lucas and Kanade optical flow method and then using it as the first guess. To retrieve AMVs, Himawari-8/AHI geostationary satellite level-1B data were used at 00, 06, 12, and 18 UTC from August 19 to September 5, 2015. To evaluate the impact of applying the optical flow method on the AMV derivation, cross-validation has been conducted in three ways as follows. (1) Without the first-guess, (2) NWP (KMA/UM) forecasted wind as the first-guess, and (3) Optical flow method based wind as the first-guess. As the results of verification using ECMWF ERA-Interim reanalysis data, the highest precision (RMSVD: 5.296-5.804 ms-1) was obtained using optical flow based winds as the first-guess. In addition, the computation speed for AMVs derivation was the slowest without the first-guess test, but the other two had similar performance. Thus, applying the optical flow method in the target tracking process of AMVs algorithm, this study showed that the optical flow method is very effective as a first guess for model-independent AMVs derivation.

Detection of Illegal U-turn Vehicles by Optical Flow Analysis (옵티컬 플로우 분석을 통한 불법 유턴 차량 검지)

  • Song, Chang-Ho;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.948-956
    • /
    • 2014
  • Today, Intelligent Vehicle Detection System seeks to reduce the negative factors, such as accidents over to get the traffic information of existing system. This paper proposes detection algorithm for the illegal U-turn vehicles which can cause critical accident among violations of road traffic laws. We predicted that if calculated optical flow vectors were shown on the illegal U-turn path, they would be cause of the illegal U-turn vehicles. To reduce the high computational complexity, we use the algorithm of pyramid Lucas-Kanade. This algorithm only track the key-points likely corners. Because of the high computational complexity, we detect center lane first through the color information and progressive probabilistic hough transform and apply to the around of center lane. And then we select vectors on illegal U-turn path and calculate reliability to check whether vectors is cause of the illegal U-turn vehicles or not. Finally, In order to evaluate the algorithm, we calculate process time of the type of algorithm and prove that proposed algorithm is efficiently.

A Composition of Mosaic Images based on MPEG Compressed Information (MPEG 압축 정보를 이용한 모자이크 구성)

  • 설정규;이승희;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.47-55
    • /
    • 2003
  • This paper proposes a composition method of mosaic image from the compressed MPEG-2 video stream, in which the displacement between successive frames according to the camera operation is estimated directly from the information involved in the stream. In the proposed method. the approximated optical flow is constructed from motion vectors of macro blocks, and it is used to determine the parameters of the displacements according to the camera operation associated with pan and tilt. The extracted parameters are used to determine the geometric transform of successive video frames in order to construct a mosaic image. The construction of mosaic uses several blending techniques including the one proposed by Nichols in which an analytic weight is used to determine pixel values. Through the experiment, the blending technique based on analytic weights was superior to the others such as averaging and median-based techniques. It provided more smooth changes in background and made use of instantaneous frame information to construct a mosaic. The mosaic in the paper puts the emphasis on the reduction of computation because it is constructed from the motion vectors included in the compressed video without decoding and recalculating exact optical flows. The constructed mosaic can be used in the retrieval of the compressed video as the representative frame of a shot.

Tracking and Interpretation of Moving Object in MPEG-2 Compressed Domain (MPEG-2 압축 영역에서 움직이는 객체의 추적 및 해석)

  • Mun, Su-Jeong;Ryu, Woon-Young;Kim, Joon-Cheol;Lee, Joon-Hoan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.

Accelerating Flow based Image Abstraction by using mobile GPU (모바일 GPU를 활용한 플로우 기반 영상 추상화 기법의 가속)

  • Jeon, Se-Weon;Kim, Jin-Woo;Han, Tack-Don
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.108-111
    • /
    • 2014
  • 본 논문에서는 스마트폰에 탑재되는 모바일 GPU 를 활용하여 만화 형식의 영상을 생성하는 과정을 가속하는 방법을 제시하였다. 또한 모바일 GPU 에 적합한 벡터 데이터 타입과 벡터 명령어의 사용 및 워크 그룹 크기에 의한 영향을 고려한 최적화를 적용하였다. 제안하는 모바일 GPU 가속 기법의 검증을 위해 OpenCL API 를 이용하여 구현하였다 실험 결과를 통해 제안하는 기법이 모바일 CPU 기반의 처리 방법 보다 800% 이상의 성능 향상을 있음을 확인하였다.

Anomaly Detection in Traffic Video Using Optical-Flow Based Scene Modeling (옵티컬 플로우 기반 장면 모델링을 통한 교통 영상 내의 이상 상황 인식 시스템)

  • Kwon, Eonhye;Noh, SeungJong;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.488-491
    • /
    • 2012
  • 최근 카메라 센서 및 알고리즘의 발달로 엔터테인먼트 목적의 영상 시스템을 비롯한 공정 기술, 교육 및 의료 등 다양한 목적의 영상 시스템이 개발 되고 있다. 또한 범죄 예방, 사고 상황 인식을 위한 감시 영상 시스템의 연구도 활발히 진행되고 있다. 본 논문에서는 이상 상황 인식을 위한 지능형 교통 시스템에 대해 제안하고자 한다. 제안하는 시스템은 크게 학습 과정과 이상 상황 인식 과정으로 나누어진다. 학습 과정에서는 CCTV와 같은 정적인 카메라에서 촬영된 도로 교통 영상에서 이동 객체의 특징을 추출하고 이를 추적하여 특징 벡터를 구성한다. 구성된 특징 벡터들은 클러스터링 기법을 통해 장면을 모델링하는데 이용되며 최종적으로 이 모델을 이용해 실시간으로 도로 교통 영상에서 이상 상황을 인식할 수 있게 된다. 실험을 통한 성능 평가를 통해 시스템의 우수함을 확인 하였다.

Motion Field Estimation Using U-disparity Map and Forward-Backward Error Removal in Vehicle Environment (U-시차 지도와 정/역방향 에러 제거를 통한 자동차 환경에서의 모션 필드 예측)

  • Seo, Seungwoo;Lee, Gyucheol;Lee, Sangyong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2343-2352
    • /
    • 2015
  • In this paper, we propose novel motion field estimation method using U-disparity map and forward-backward error removal in vehicles environment. Generally, in an image obtained from a camera attached in a vehicle, a motion vector occurs according to the movement of the vehicle. but this motion vector is less accurate by effect of surrounding environment. In particular, it is difficult to extract an accurate motion vector because of adjacent pixels which are similar each other on the road surface. Therefore, proposed method removes road surface by using U-disparity map and performs optical flow about remaining portion. forward-backward error removal method is used to improve the accuracy of the motion vector. Finally, we predict motion of the vehicle by applying RANSAC(RANdom SAmple Consensus) from acquired motion vector and then generate motion field. Through experimental results, we show that the proposed algorithm performs better than old schemes.

A Study on The Tracking and Analysis of Moving Object in MPEG Compressed domain (MPEG 압축 영역에서의 움직이는 객체 추적 및 해석)

  • 문수정;이준환;박동선
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.103-106
    • /
    • 2001
  • 본 논문에서는 MPEG2비디오 스트림에서 직접 얻을 수 있는 정보들을 활용하여 카메라의 움직임을 추정하여 이를 기반으로 하여 움직이는 객체를 추정하고자 한다. 이를 위해, 먼저 MPEG2의 움직임 벡터는 압축의 효율성 때문에 움직임의 예측이 순서적이지 못한데, 예측 프레임들의 속성을 이용하여 이를 광 플로우(Optical Flow)를 갖는 움직임 벡터(Motion Vector)로 변환하였다. 그리고 이러한 벡터들을 이용하여 카메라의 기본적인 움직임인 팬(Fan), 틸트(Tilt). 줌(Zoom) 등을 정의하였다. 이를 위하여 팬, 틸트-줌 카메라 모델의 매개변수와 같은 의미의 $\Delta$x, $\Delta$y, $\alpha$값을 정의하고자 움직임 벡터 성분의 Hough변환을 이용하여 $\Delta$x, $\Delta$y, $\alpha$값들을 구하였다. 또한 이러한 카메라 움직임(Camera Operation)은 시간적으로 연속적으로 발생하는 특징을 이용하여 각 프레임마다 구한 카메라의 움직임을 보정하였다. 마지막으로 움직이는 객체의 추정은 우선 사용자가 원하는 객체를 바운딩박스 형태로 정의한 후 카메라 움직임이 보정된 객체의 움직임 벡터를 한 GOF(Group of Pictures) 단위로 면적 기여도에 따라 누적하여 객체를 추적하고 해석하였으며 DCT 질감 정보를 이용하여 객체의 영역을 재설정 하였다. 물론 압축된 MFEG2비디오에서 얻을 수 있는 정보들은 최대 블록 단위이므로 객체의 정의도 블록단위 이상의 객체로 제한하였다. 제안된 방법은 비디오 스트림에서 직접 정보를 얻음으로써 계산속도의 향상은 물론 카메라의 움직임특성과 움직이는 객체의 추적들을 활용하여 기존의 내용기반의 검색 및 분석에도 많이 응용될 수 있다. 이러한 개발 기술들은 압축된 데이터의 검색 및 분석에 유용하게 사용되리라고 기대되며 , 특히 검색 툴이나 비디오 편집 툴 또는 교통량 감시 시스템, 혹은 무인 감시시스템 등에서 압축된 영상의 저장과 빠른 분석을 요구시 필요하리라고 기대된다.

  • PDF