• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.032 seconds

Wind field prediction through generative adversarial network (GAN) under tropical cyclones (생성적 적대 신경망 (GAN)을 통한 태풍 바람장 예측)

  • Na, Byoungjoon;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.370-370
    • /
    • 2021
  • 태풍으로 인한 피해를 줄이기 위해 경로, 강도 및 폭풍해일의 사전 예측은 매우 중요하다. 이중, 태풍의 경로와는 달리 강도 및 폭풍해일의 예측에 있어서 바람장은 수치 모델의 초기 입력값으로 요구되기 때문에 정확한 바람장 정보는 필수적이다. 대기 바람장 예측 방법은 크게 해석적 모델링, 라디오존데 측정과 위성 사진을 통한 산출로 구분할 수 있다. Holland의 해석적 모델링은 비교적 적은 입력값이 필요하지만 정확도가 낮고, 라디오존데 측정은 정확도가 높지만 점 측정에 가깝기 때문에 이차원 바람장을 산출하기에 한계가 있다. 위성 사진을 통한 바람장 산출은 위성기술의 고도화로 관측 채널 수 및 시공간 해상도가 크게 증가하고 있기 때문에 다양한 기법들이 개발되고 있다. 본 연구에서는 생성적 적대 신경망 (Generative Adversarial Network, GAN)을 통해 일련의 연속된 과거 적외 채널 위성 사진 흐름의 패턴을 학습시켜 미래 위성 사진을 예측하고, 예측된 연속적인 위성 사진들의 교차상관 (cross-correlation)을 통해 바람장을 산출하였다. GAN을 적용함에 있어 2011년부터 2019년까지 한반도 근방에 접근했던 태풍 중에 4등급 이상인 68개의 태풍의 한 시간 간격으로 촬영된 총 15,683개의 위성 사진을 학습시켜 생성된 이미지들은 실측 위성 사진들과 매우 유사한 것으로 나타났다. 또한, 생성된 이미지들의 교차상관으로 얻어진 바람장 벡터들의 풍향, 풍속, 벡터 일관성 및 수치 모델과의 비교를 통해 각각의 벡터들의 품질 계수를 구하고 정확도가 높은 벡터들만 결과에 포함하였다. 마지막으로 국내 6개의 라디오존데 관측점에서의 실측 벡터와의 비교를 통해 본 연구 결과의 실효성을 검증하였다. 본 연구에서 확장하여, 이와 같이 AI 기법과 이미지 교차상관 기법을 사용하여 얻어진 바람장으로부터 태풍 강도예측에 필요한 요소인 태풍의 눈의 위치, 최고 속도와 태풍 반경을 직접적으로 산출할 수 있고. 이러한 위성 사진을 기반으로 한 바람장은 단순화된 해석적 바람장을 대체하여 폭풍 해일 모델링의 예측 성능 개선에 기여할 것으로 보여진다.

  • PDF

Abnormal sonar signal detection using recurrent neural network and vector quantization (순환신경망과 벡터 양자화를 이용한 비정상 소나 신호 탐지)

  • Kibae Lee;Guhn Hyeok Ko;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.500-510
    • /
    • 2023
  • Passive sonar signals mainly contain both normal and abnormal signals. The abnormal signals mixed with normal signals are primarily detected using an AutoEncoder (AE) that learns only normal signals. However, existing AEs may perform inaccurate detection by reconstructing distorted normal signals from mixed signal. To address these limitations, we propose an abnormal signal detection model based on a Recurrent Neural Network (RNN) and vector quantization. The proposed model generates a codebook representing the learned latent vectors and detects abnormal signals more accurately through the proposed search process of code vectors. In experiments using publicly available underwater acoustic data, the AE and Variational AutoEncoder (VAE) using the proposed method showed at least a 2.4 % improvement in the detection performance and at least a 9.2 % improvement in the extraction performance for abnormal signals than the existing models.

The Method of Using the Automatic Word Clustering System for the Evaluation of Verbal Lexical-Semantic Network (동사 어휘의미망 평가를 위한 단어클러스터링 시스템의 활용 방안)

  • Kim Hae-Gyung;Yoon Ae-Sun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.3
    • /
    • pp.175-190
    • /
    • 2006
  • For the recent several years, there has been much interest in lexical semantic network However it seems to be very difficult to evaluate the effectiveness and correctness of it and invent the methods for applying it into various problem domains. In order to offer the fundamental ideas about how to evaluate and utilize lexical semantic networks, we developed two automatic vol·d clustering systems, which are called system A and system B respectively. 68.455.856 words were used to learn both systems. We compared the clustering results of system A to those of system B which is extended by the lexical-semantic network. The system B is extended by reconstructing the feature vectors which are used the elements of the lexical-semantic network of 3.656 '-ha' verbs. The target data is the 'multilingual Word Net-CoroNet'. When we compared the accuracy of the system A and system B, we found that system B showed the accuracy of 46.6% which is better than that of system A. 45.3%.

Human Face Recognition using BP Neural Networks and Edge Image Extraction Based on Haar Wavelet (Haar 웨이블릿 기반 에지영상추출과 BP 신경망을 이용한 얼굴 인식)

  • Choi, Gwang-Mi;Jung, Chai-Yeoung
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.635-638
    • /
    • 2003
  • 본 논문에서는 Haar 웨이블릿을 이용하여 얼굴에지영상을 추출하고 고차국소자동상관함수를 이용한 특징벡터추출과 BP(Backpropagation Network) 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안한다. 이를 위한 얼굴인식에 사용된 실험영상은 $320{\times}240$ 크기의 24bit RGB 컬러 영상을 사용하였고, 차영상을 이용하여 얼굴영역을 분리한 후 Haar 웨이블릿을 이용한 에지영상 추출과 얼굴영역의 특징벡터를 구하기 위하여 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

  • PDF

A study on Gabor Filter Bank-based Feature Extraction Algorithm for Analysis of Acoustic data of Emergency Rescue (응급구조 음향데이터 분석을 위한 Gabor 필터뱅크 기반의 특징추출 알고리즘에 대한 연구)

  • Hwang, Inyoung;Chang, Joon-Hyuk
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1345-1347
    • /
    • 2015
  • 본 논문에서는 응급상황이 신고되는 상황에서 수보자에게 전달되는 신고자의 주변음향신호로부터 신고자의 주변상황을 추정하기 위하여 음향의 주파수적 특성 및 변화특성의 모델링 성능이 뛰어난 Gabor 필터뱅크 기반의 특징벡터 추출 기술 및 분류 성능이 뛰어난 심화신경망을 도입한다. 제안하는 Gabor 필터뱅크 기반의 특징벡터 추출 기법은 비음성 구간 검출기를 통하여 음성/비음성을 구분한 후에 비음성 구간에서 23차의 Mel-filter bank 계수를 추출한 후에 이로부터 Gabor 필터를 이용하여 주변상황 추정을 위한 특징벡터를 추출하고, 이로부터 학습된 심화신경망을 통하여 신고자의 장소적 정보를 추정한다. 제안된 기법은 여러 가지 시나리오 환경에서 평가되었으며, 우수한 분류성능을 보였다.

Efficient Collecting Scheme the Crack Data via Vector based Data Augmentation and Style Transfer with Artificial Neural Networks (벡터 기반 데이터 증강과 인공신경망 기반 특징 전달을 이용한 효율적인 균열 데이터 수집 기법)

  • Yun, Ju-Young;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.667-669
    • /
    • 2021
  • 본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.

  • PDF

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

The Real-time Printed Alphabets Recognition using Artificial Neural Networks (인공신경망을 이용한 실시간 영문인쇄체 인식)

  • 심성균;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.149-152
    • /
    • 2001
  • The goals of this papper are not only to maximize of performance but also to reduce the response time for the real-time printed alphabets recognition system using the backpropagation algorithm in the artificial neural network. The Genesis board and MIL(Matrox Image Library) package were used to real-time acquisition, processing and display of images. Through this experiment proved the possibility of real-time recognition processing by comparing response times of the system and proposing the method to reduce of order of the output vectors.

  • PDF

Deep neural networks for speaker verification with short speech utterances (짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망)

  • Yang, IL-Ho;Heo, Hee-Soo;Yoon, Sung-Hyun;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.501-509
    • /
    • 2016
  • We propose a method to improve the robustness of speaker verification on short test utterances. The accuracy of the state-of-the-art i-vector/probabilistic linear discriminant analysis systems can be degraded when testing utterance durations are short. The proposed method compensates for utterance variations of short test feature vectors using deep neural networks. We design three different types of DNN (Deep Neural Network) structures which are trained with different target output vectors. Each DNN is trained to minimize the discrepancy between the feed-forwarded output of a given short utterance feature and its original long utterance feature. We use short 2-10 s condition of the NIST (National Institute of Standards Technology, U.S.) 2008 SRE (Speaker Recognition Evaluation) corpus to evaluate the method. The experimental results show that the proposed method reduces the minimum detection cost relative to the baseline system.

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF