• 제목/요약/키워드: 벡터감정

검색결과 101건 처리시간 0.024초

종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발 (A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine)

  • 황재원;전태균;고영중
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

음성신호기반의 감정분석을 위한 특징벡터 선택 (Discriminative Feature Vector Selection for Emotion Classification Based on Speech.)

  • 최하나;변성우;이석필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1391-1392
    • /
    • 2015
  • 최근 컴퓨터 기술이 발전하고, 컴퓨터의 형태가 다양해지면서 여러 wearable device들이 생겨났다. 이에 따라 휴먼 인터페이스 기술에서 사람의 감정정보가 중요해졌고, 감정인식에 대한 연구들이 많이 진행 되어 왔다. 본 논문에서는 감정분석에 적합한 특징벡터를 제시하고자 한다. 이를 위해 사람의 감정을 보통, 기쁨, 슬픔, 화남 4가지로 분류하고 방송매체를 통하여 잡음 없이 녹음하였다. 특징벡터는 MFCC, LPC, LPCC 3가지를 추출하였고 Bhattacharyya거리 측정을 통하여 분리도를 비교하였다.

  • PDF

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

형판 벡터와 신경망을 이용한 감성인식 (Emotion Recognition Using Template Vector and Neural-Network)

  • 오재흥;이상윤;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.325-328
    • /
    • 2002
  • 본 논문에서는 사람의 식별과 감정을 인식하기 위한 하나의 방법을 제안한다. 제안된 방법은 색차 정보에 의한 형판의 위치 인식과 형판 벡터 추출에 기반한다. 단일 색차 공간만을 이용할 경우 살색 영역을 정확히 추출하기 힘들다. 이를 보완하기 위해서 여러 가지 색차 공간을 병행하여 살색 영역을 추출하며, 이를 응용하여 각각의 형판을 추출하는 방법을 제안한다. 그리고, 사람의 식별과 감정 인식을 위해서 추출된 형판에 대한 각각의 특징 벡터 추출 방법을 제시하며, 마지막으로 추출된 형판 벡터를 이용하여 신경망을 통한 학습과 인식을 수행하는 방법을 제시한다.

스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단 (Detection of Character Emotional Type Based on Classification of Emotional Words at Story)

  • 백영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.131-138
    • /
    • 2013
  • 본 논문에서는 등장인물이 대사에서사용한감정어를 이용하여 등장인물의 감정 유형을 분류하는 방법을 제안하고 성능을 평가한다. 감정 유형은 긍정, 부정, 중립의 3 종류로 분류하며, 등장인물이 사용한 감정어를 누적하여 3 종류의 감정 유형 중에 어디에 속하는지를 파악한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안하고 감정어가 가진 감정 성분을 벡터로 표현하는 방식을 제안한다. WordNet은 영어 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정항목과의 거리를 계산하여 단어별감정량을 계산하여 대사를 30 차원의 감정벡터로 표현한다. 등장인물별로 추출된 감정 벡터 성분들을 긍정, 부정, 중립의 3가지 차원으로 축소하여 표현한 후, 등장인물의 감정 성향이 어떻게 나타나는지를 추출한다. 또한 감정 성향의 추출 성능에 대해 헐리우드 영화 4개의 영화에서 12명의 등장인물을 선정하여 평가하여 제안한 방법의 효율성을 측정하였다. 대사는 영어로 이루어진 대사만을 사용하였다. 추출된 감정 성향 판단 성능은 75%의 정확도로 우수한 추출 성능을 나타내었다.

감정어 추출을 통한 등장인물 성향 가시화 연구 (Visualization Study of Character Type by Emotion Word Extraction)

  • 백영태;박승보
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.31-32
    • /
    • 2013
  • 본 논문에서는 영화의 등장인물의 성향을 파악하기 위해 시나리오의 대사로부터 감정어를 추출하고, 등장인물의 감정어들을 긍정, 부정, 중립의 3개로 단순화하여 등장인물의 성향을 가시화 시켜주는 방법을 제안한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안한다. WordNet은 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정 항목과의 거리를 계산하여 단어별 감정량을 계산하여 대사를 30 차원의 감정 벡터로 표현한다. 등장인물별로 추출된 감정 벡터를 긍정, 부정, 중립의 3개의 차원으로 단순화 하여 등장인물의 성향을 표현한다.

  • PDF

임베딩 자질을 이용한 대화의 감정 분류 (Emotion Classification in Dialogues Using Embedding Features)

  • 신동원;이연수;장정선;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

효과적인 감정인식을 위한 음성 특징 벡터 생성 (Generating Speech feature vectors for Effective Emotional Recognition)

  • 심인우;한의환;차형태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.687-690
    • /
    • 2019
  • 본 논문에서는 효과적인 감정인식을 위한 효과적인 특징 벡터를 생성한다. 이를 위해서 음성 데이터 셋 RAVDESS를 이용하였으며, 그 중 neutral, calm, happy, sad 총 4가지 감정을 나타내는 음성 신호를 사용하였다. 본 논문에서는 기존에 감정인식에 사용되는 MFCC1~13차 계수와 pitch, ZCR, peakenergy 중에서 효과적인 특징을 추출하기 위해 클래스 간, 클래스 내 분산의 비를 이용하였다. 실험결과 감정인식에 사용되는 특징 벡터들 중 peakenergy, pitch, MFCC2, MFCC3, MFCC4, MFCC12, MFCC13이 효과적임을 확인하였다.

감정확률을 이용한 동적 얼굴표정의 퍼지 모델링 (Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion)

  • 강효석;백재호;김은태;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.401-404
    • /
    • 2007
  • 본 논문은 거울 투영을 이용하여 2D의 감정인식 데이터베이스를 3D에 적용 가능하다는 것을 증명한다. 또한, 감정 확률을 이용하여 퍼지 모델링을 기반으로한 얼굴표정을 생성하고, 표정을 움직이는 3가지 기본 움직임에 대한 퍼지이론을 적용하여 얼굴표현함수를 제안한다. 제안된 방법은 거울 투영을 통한 다중 이미지를 이용하여 2D에서 사용되는 감정인식에 대한 특징벡터를 3D에 적용한다. 이로 인해, 2D의 모델링 대상이 되는 실제 모델의 기본감정에 대한 비선형적인 얼굴표정을 퍼지를 기반으로 모델링한다. 그리고 얼굴표정을 표현하는데 기본 감정 6가지인 행복, 슬픔, 혐오, 화남, 놀람, 무서움으로 표현되며 기본 감정의 확률에 대해서 각 감정의 평균값을 사용하고, 6가지 감정 확률을 이용하여 동적 얼굴표정을 생성한다. 제안된 방법을 3D 인간형 아바타에 적용하여 실제 모델의 표정 벡터와 비교 분석한다.

  • PDF

Noisy 텍스트 임베딩을 이용한 한국어 감정 분석 (Korean Sentiment Analysis by using Noisy Text Embedding)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.506-509
    • /
    • 2019
  • 신문기사나 위키피디아와 같이 정보를 전달하는 텍스트와는 달리 사람의 감정 및 의도를 표현하는 텍스트는 다양한 형태의 노이즈를 포함한다. 본 논문에서는 data-driven 방법을 이용하여 노이즈와 단어들 사이의 관계를 LSTM을 이용하여 하나의 벡터로 요약하는 모델을 제안한다. 노이즈 문장 벡터를 표현하는 방식으로는 단방향 LSTM 인코더과 양방향 LSTM 인코더의 두 가지 모델을 이용하여 노이즈를 포함하는 영화 리뷰 데이터를 가지고 감정 분석 실험을 하였고, 실험 결과 단방향 LSTM 인코더보다 양방향 LSTM인 코더가 우수한 성능을 보여주었다.

  • PDF