• Title/Summary/Keyword: 베인디퓨저

Search Result 24, Processing Time 0.02 seconds

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Compressor Performance with Variation of Diffuser Vane Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Shin, Y. H.;Kim, K. H.;Bae, M. H,;Kim, J. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.36-43
    • /
    • 2000
  • This study presents the centrifugal compressor performance for three different vane stagger angles and wall pressure distribution within vaned diffuser channels, and is also discussed about the stability with respect to the compressor components. As the vane stagger angle decreases, the flow rate for the stall onset decreases, and higher pressure can be obtained at the low flow rate region, however, the effective operation range of the compressor decreases because of the blockage effect of the diffuser vane. Low pressure pocket within the vaned diffuser channel moves from the pressure side of leading edge to the suction side as the flow rate decreases. The compressor system stability mainly depends on that of the diffuser.

  • PDF

Performance Evaluation and Numerical Calculation of Flows through a Vaned Diffuser for Centrifugal Compressor (원심압축기용 베인 디퓨저 내부유동의 수치해석 및 성능평가)

  • Choi, Yun-Ho;Kang, Shin-Hyoung;Lee, Jang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1296-1309
    • /
    • 1999
  • A three dimensional compressible Navier-Stokes code is developed to analyze flowfields and performance of a vaned diffuser in a centrifugal compressor. It employs scalar implicit approximate factorization, finite volume formulation, second order upwind differencing and a two-equation $q-{\omega}$ turbulence model based on the integration to the wall. Pressure recovery and loss coefficients of a vaned diffuser are evaluated using a developed computer code. The simulated three dimensional flows show how through flow structure affects pressure recovery performance and loss coefficients of a vane for design and off-design inlet flow angles. Development of complex three dimensional flow over the inlet region and leading edge are very influential to the overall flow and performance.

Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump (원심다단펌프용 디퓨저-리턴채널의 유동특성)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes (디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측)

  • Kim, Yongse;Kong, Dongjae;Shin, SangJoon;Park, Kihoon;Im, Kangsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.24-35
    • /
    • 2018
  • Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

Effects of the Variation of Divergence Angle of Vaned Diffuser on the Flow Characteristics of a Small-size Turbo-compressor (소형 터보압축기 베인 디퓨저 확대각 변화에 따른 유동특성 고찰)

  • Kim, H.S.;Cheong, J.S.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.813-818
    • /
    • 2001
  • The flow characteristics of the vaned diffuser were complicated with geometric shapes. We have studied the effects of various vaned diffuser configurations, such as divergence angles and rectangular and conical cross-section shapes. Numerical analyses are carried out for the diffuser and casing. The pressure recovery coefficient was calculated to estimate the performance of the diffuser, and then compared with the measure data. Results show that the shapes and the divergence angles of the diffuser strongly influence on the performance of the small-size turbo-compressor.

  • PDF

Numerical Study on the Unsteady Flow in the Vaned Diffuser of Centrifugal Compressor (원심 압축기 베인 디퓨져내 비정상 유동의 수치해석적 연구)

  • Hwang, Sung-Mok;Han, Wha-Taek;Kim, Won-Kap
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.113-119
    • /
    • 2001
  • Interaction of flow through an Impeller and a Vaned Diffuser in Centrifugal Compressor was investigated using the 3-dimensional Wavier-Stokes solution method. To consider the interaction effect of impeller and vaned diffuser, Inlet boundary conditions are imposed with the results of the steady calculation of the impeller and rotates with time. The results have been compared to steady computation results and experiment. From this, it is discussed about the compatability of the method and the advantage and disadvantage of the steady calculation.

  • PDF

Study on the Radial Diffuser of Multistage High Pressure Pump (고압 다단 펌프의 레이디얼 디퓨저에 대한 연구)

  • Kim, Deok Su;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.727-736
    • /
    • 2016
  • In this study, a high-pressure multistage pump used in the combined cycle power plants is analyzed. The pump performance characteristics (differential head and efficiency) are numerically analyzed for different shapes of the radial diffuser. The design variables selected for the radial diffuser are, number of vanes, diameter ratio ($D_4/D_3$), return channel outlet angle(${\alpha}_6$), and pressure recovery factor ($C_p$). The numerical analysis results showed that the differential head and efficiency are the highest when the diameter ratio is the highest. Further, it was observed that the differential head was lower when the return channel outlet angle was $60^{\circ}$ than when it was $90^{\circ}$, because of pre-swirl at the diffuser outlet.

Performance Characteristics of a Small-Size Turbo-Compressor with Different Vaned Diffuser Throat Area Ratios (베인 디퓨져 목 형상비 변화에 따른 소형 터보압축기 성능특성 고찰)

  • Kim, H.-S.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.120-125
    • /
    • 2001
  • The effects of various vaned diffuser configurations, such as throat area ratios and rectangular and conical cross-section shapes. to the performance of a small-size turbo-compressor are studied. Numerical analyses were carried out for the region of diffuser and casing only. The pressure recovery coefficient was calculated to estimate the performance of the diffuser, and then compared with the measured data. Results show that the shapes and the throat area ratios of the diffuser strongly influence on the performance of a turbo-compressor.

  • PDF

Experimental Study on the Performance Characteristics of the Diffuser as a Relation of the Variation of Vane Turning Angle (베인 회전각의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구)

  • Cho, Sung-Kook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.74-80
    • /
    • 1999
  • Recently, impressive gains of performance and efficiency with apparently little or no loss in flow range have been seen with the use of LSVD(Low Solidity Vaned Diffuser) over vaneless diffuser. Experiments of the effects of the vane turning angle variations(positive, negative, zero), with the other design parameters fixed, on the performance and flow range were carried out. Diffusers with a zero turning angle have the best characteristics in terms of performance and efficiency and the FFT results show different frequency characteristics due to vane turning angles in low flow range.

  • PDF