본 논문에서는 KOSPI 200 주가지수 선물의 만기효과와 베이시스의 행태를 체계적으로 헤지 의사결정에 반영하기 위한 몇 가지 방법을 실증분석하였다. 우선 베이시스의 동태적 운동형태를 명시적으로 설정하지 않고 통계적인 방법을 통하여 헤지해제시점이 선물만기에 접근함에 따라 베이시스가 변동되는 양상을 반영한 헤지비율을 산출한다. 그 다음에는 헤지기간 전체에 걸친 베이시스의 운동형태를 명시적으로 설정하여 이에 입각한 헤지비율을 계산한다. 명시적인 베이시스의 운동형태는 비확률적인 과정과 확률적인 과정으로 다시 구분하고, 이 각각에 입각하여 최적헤지활동을 결정한다. 모든 헤지활동은 가장 최근까지의 정보를 이용하여 사전적으로 미래 헤지기간에 대한 의사결정을 하게 된다. 그러한 헤지활동의 사후적인 결과는 베이시스 행태를 별도로 고려하지 않고 단순선형회귀분석만을 이용하여 산출된 헤지성과와 비교되고, 변동성 감소 및 손실감소의 측면에서 각 접근방법이 가지는 특징 및 효율성을 평가한다. 실증 분석 결과, 헤지의 성과를 제고하기 위하여 선물의 만기효과와 베이시스의 행태변화를 체계적으로 반영한 세 가지의 시도 중 어느 것도 위험-수익의 2차원적인 비교에서 베이시스의 행태변화를 명시적으로 반영하지 않은 전통적 단순회귀분석을 압도하지 못하였다.
The objective of this study is to analyze the market efficiency in the futures markets. Although many previous studies have investigated market efficiency between spot and futures prices, that with different maturities has not been studied in the futures markets extensively. For our objective, this paper examines KOSPI200 stock index future market with different maturities. We analyze the dynamic serial relationship of the difference of basis between nearest-month contract and next nearest-month contract using dynamic regression analysis suggested by Kawamoto and Hamori(2011) Using the data from 2000. 1 to 2013. 12, the major empirical findings are as follows: First. the mean and standard deviation of basis of next nearest-month contract is bigger than those of nearest-month contract. Second, the t-period basis of nearest-month contract can be explained by (t-1)period basis of that. Third, the basis spread of t-period and (t-1)period have negative affect on the return of underlying assets. This result is very reasonable because two basis spreads are derived from same underlying assets. Finally, basis information of next nearest-month contract can be used for the prediction of nearest-month contract and spot market return.
In vocabulary recognition using an HMM model which models the prior distribution for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate. The Bayesian techniques to improve vocabulary recognition model, it is proposed using a convergence of two methods to improve recognition noise-canceling recognition. In this paper, using a convergence of the prior probability method and techniques of Bayesian posterior probability based on HMM remove noise and improves the recognition rate. The result of applying the proposed method, the recognition rate of 97.9% in vocabulary recognition, respectively.
In this paper. we propose a method of confidence measure fusion under Bayesian framework for speech recognition. Centralized and distributed schemes are considered for confidence measure fusion. Centralized fusion is feature level fusion which combines the values of individual confidence scores and makes a final decision. In contrast. distributed fusion is decision level fusion which combines the individual decision makings made by each individual confidence measuring method. Optimal Bayesian fusion rules for centralized and distributed cases are presented. In isolated word Out-of-Vocabulary (OOV) rejection experiments. centralized Bayesian fusion shows over 13% relative equal error rate (EER) reduction compared with the individual confidence measure methods. In contrast. the distributed Bayesian fusion shows no significant performance increase.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.5
/
pp.83-87
/
2011
Naive Bayesian learning has been widely used in machine learning. However, in traditional naive Bayesian learning, we make two assumptions: (1) each attribute is independent of each other (2) each attribute has same importance in terms of learning. However, in reality, not all attributes are the same with respect to their importance. In this paper, we propose a new paradigm of calculating the importance of attributes for naive Bayesian learning. The performance of the proposed methods has been compared with those of other methods including SBC and general naive Bayesian. The proposed method shows better performance in most cases.
While the Forward Freight Agreement (FFA) has emerged as an effective hedging tool since early 1990, the basis risk and cash flow distortions have been addressed as obstacles to the active use of FFAs. This research analyses the basis risk of FFAs and provides a feasible suggestion to reduce it. Basis risk is divided into timing basis, route basis, size basis, and low liquidity basis. The timing basis is defined as the difference between the physical hire, fixed on the specific contract date and the FFA settlement price, calculated by averaging spot rates for a certain period. Timing basis is considered the worst in eroding the effectiveness of FFAs. This paper suggests a change of hire payment criterion from contract date to 15-day moving average, as a means of mitigating the basis risk, and analyzed the effectiveness through historical simulation. The result revealed that the change is effective in mitigating the timing basis. This study delivers a meaningful implication to shipping practice in that the change of hire payment criterion mitigates the basis risk and eventually activates the use of FFAs in the future.
In the current 2D-based design, design reliability is lowered due to interference and inconsistency between plans, errors in drawings and quantities, etc. At the time of transition to BIM-based 3D design, it is necessary to expand the reliability and usability of BIM by eliminating these errors from the design stage through securing the quality of the BIM digital model. Therefore, in the railway infrastructure design stage, the quality management process and standards of the BIM digital model were defined and quality management index were developed. Based on the rule extracted from the quality management index, a pilot quality management was conducted in connection with the commercial Model-Checker rule, problems and improvement plans were derived, and a rule-based automated quality management plan was prepared.
Though naive Bayes text classifiers are widely used because of its simplicity, the techniques for improving performances of these classifiers have been rarely studied. In this paper, we propose and evaluate some general and effective techniques for improving performance of the naive Bayes text classifier. We suggest document model based parameter estimation and document length normalization to alleviate the Problems in the traditional multinomial approach for text classification. In addition, Mutual-Information-weighted naive Bayes text classifier is proposed to increase the effect of highly informative words. Our techniques are evaluated on the Reuters21578 and 20 Newsgroups collections, and significant improvements are obtained over the existing multinomial naive Bayes approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.