• Title/Summary/Keyword: 베이지안 MCMC 알고리즘

Search Result 15, Processing Time 0.026 seconds

Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis: Bayesian MCMC and Metropolis-Hastings Algorithm (강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석: Bayesian MCMC 및 Metropolis-Hastings 알고리즘을 중심으로)

  • Seo, Young-Min;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1385-1389
    • /
    • 2010
  • 수자원 계획에 있어서 강우 또는 홍수빈도분석시 주로 사용되는 확률의 개념은 상대빈도에 대한 극한으로 확률을 정의하는 빈도학파적 확률관점에 속하며, 확률모델에서 미지의 매개변수들은 고정된 상수로 간주된다. 따라서 확률은 객관적이고 매개변수들은 고정된 값을 가지기 때문에 이러한 매개변수들에 대한 확률론적 설명은 매우 어렵다. 본 연구에서는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성을 정량화하기 위하여 베이지안 MCMC 및 Metropolis-Hastings 알고리즘을 이용한 불확실성 평가모델을 구축하였다. 그리고 베이지안 MCMC 및 Metropolis-Hastings 알고리즘의 적용을 통하여 확률강우량 산정시 확률분포의 매개변수에 대한 통계학적 특성 및 불확실성 구간을 정량화하였으며, 이를 바탕으로 홍수위험평가 및 의사결정과정에서 불확실성 및 위험도를 충분히 설명할 수 있는 프레임워크 구성을 위한 기초를 마련할 수 있었다.

  • PDF

MCMC를 이용한 비동질적 포아송과정에서 일반화 순서통계량 모형의 연구

  • 최기헌;김희철
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.753-763
    • /
    • 1997
  • 컴퓨터의 발전에 따른 MCMC를 비동질적 포아송 과정에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고려하였다. 특히 분포가 이중지수, 곰페르츠, 랄리, 감마, 그리고 검벨인 일반 순서통계량 모형에 대하여 깁스 샘플링과 메트로폴리스 알고리즘을 활용한 베이지안 계산과 모형선택을 제시하였다.

  • PDF

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

A Bayesian Evolutionary Algorithm with Multiple Markov Chains (다중 마르코프 체인의 베이지안 진화 알고리즘)

  • 이시은;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.322-324
    • /
    • 2002
  • 진화 연산의 확률적 모델인 베이지안 진화 알고리즘의 수렴 특성에 대한 이전 연구를 통해 개체군 크기가 1인 경우에 대해 베이지안 진화 알고리즘을 단일 테인 MCMC로 변환하여 수렴 특성을 보였다. 본 논문에서는 개체군 크기가 1로 제한되지 않는 경우 베이지안 진화알고리즘을 다중 체 인의 개체군으로 생각하여 수렴 특성을 살펴본다.

  • PDF

Bayesian Detection of Multiple Change Points in a Piecewise Linear Function (구분적 선형함수에서의 베이지안 변화점 추출)

  • Kim, Joungyoun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.589-603
    • /
    • 2014
  • When consecutive data follows different distributions(depending on the time interval) change-point detection infers where the changes occur first and then finds further inferences for each sub-interval. In this paper, we investigate the Bayesian detection of multiple change points. Utilizing the reversible jump MCMC, we can explore parameter spaces with unknown dimensions. In particular, we consider a model where the signal is a piecewise linear function. For the Bayesian inference, we propose a new Bayesian structure and build our own MCMC algorithm. Through the simulation study and the real data analysis, we verified the performance of our method.

A study of user's anomalous behavior analysis using Bayesian Network and integrated audit data (베이지안 네트워크와 통합 감사 자료를 이용한 사용자의 비정상행위 탐지에 관한 연구)

  • 정일안;노봉남
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.269-272
    • /
    • 2001
  • 본 논문에서는 베이지안 네트워크와 통합 감사자료를 이용하여 시스템 사용자에 대한 비정상행위를 탐지하고 분석하는데 효과적인 모델을 제안하고자 한다. 이를 위해 리눅스 시스템에서의 여러 가지 감사자료들을 통합한 감사자료로부터 사용자의 행위에 대해 베이지안 네트워크로 구성하고자 한다. 베이지안 네트워크를 구성할 때 효율적인 학습이 가능한 Sparse Candidate 알고리즘을 적용하고, 감사자료의 일부가 결여되어 있는 경우에도 추론이 가능하도록 MCMC(Markov Chain Monte Carlo)의 일종인 Gibbs Sampling 방법을 적용한다.

  • PDF

Computing Methods for Generating Spatial Random Variable and Analyzing Bayesian Model (확률난수를 이용한 공간자료가 생성과 베이지안 분석)

  • 이윤동
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.379-391
    • /
    • 2001
  • 본 연구에서는 관심거리가 되고 있는 마코프인쇄 몬테칼로(Markov Chain Monte Carlo, MCMC)방법에 근거한 공간 확률난수 (spatial random variate)생성법과 깁스표본추출법(Gibbs sampling)에 의한 베이지안 분석 방법에 대한 기술적 사항들에 관하여 검토하였다. 먼저 기본적인 확률난수 생성법과 관련된 사항을 살펴보고, 다음으로 조건부명시법(conditional specification)을 이용한 공간 확률난수 생성법을 예를 들어 살펴보기로한다. 다음으로는 이렇게 생성된 공간자료를 분석하기 위하여 깁스표본추출법을 이용한 베이지안 사후분포를 구하는 방법을 살펴보았다.

  • PDF

Bayesian Filter-Based Mobile Tracking under Realistic Network Setting (실제 네트워크를 고려한 베이지안 필터 기반 이동단말 위치 추적)

  • Kim, Hyowon;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1060-1068
    • /
    • 2016
  • The range-free localization using connectivity information has problems of mobile tracking. This paper proposes two Bayesian filter-based mobile tracking algorithms considering a propagation scenario. Kalman and Markov Chain Monte Carlo (MCMC) particle filters are applied according to linearity of two measurement models. Measurement models of the Kalman and MCMC particle filter-based algorithms respectively are defined as connectivity between mobiles, information fusion of connectivity information and received signal strength (RSS) from neighbors within one-hop. To perform the accurate simulation, we consider a real indoor map of shopping mall and degree of radio irregularity (DOI) model. According to obstacles between mobiles, we assume two types of DOIs. We show the superiority of the proposed algorithm over existing range-free algorithms through MATLAB simulations.

Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference (베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구)

  • Kim, Hanbeen;Joo, Kyungwon;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

The Bayesian Approach of Software Optimal Release Time Based on Log Poisson Execution Time Model (포아송 실행시간 모형에 의존한 소프트웨어 최적방출시기에 대한 베이지안 접근 방법에 대한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. The optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement is generally accepted. The Bayesian parametric inference of model using log Poisson execution time employ tool of Markov chain(Gibbs sampling and Metropolis algorithm). In a numerical example by T1 data was illustrated. make out estimating software optimal release time from the maximum likelihood estimation and Bayesian parametric estimation.