• Title/Summary/Keyword: 베이지안 정보

Search Result 546, Processing Time 0.031 seconds

A Method of Ontology Inference based on Bayesian Probability for Decision Making of Intelligent Home Agents (지능형 홈 에이전트의 의사결정을 위한 베이지안 확률기반 온톨로지 추론 방법)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.357-361
    • /
    • 2007
  • 지능형 에이전트가 홈네트워크 환경 속에서 사용자에게 적절한 서비스를 제공하기 위해서는 에이전트가 속한 환경에 대한 모델이 필요하다. 온톨로지는 이러한 환경 모델을 표현하기 위한 유용한 도구로 복잡한 도메인의 조직적 구조 표현에 있어서 뛰어난 성능을 보여준다. 하지만 전통적 온톨로지는 크리스프 로직에 기반하기 때문에 현실세계의 불확실성을 표현하기에는 적합하지 않다. 본 논문에서는 온톨로지의 이러한 한계점을 보완하고, 불확실한 환경 속에서 지능형 홈 에이전트가 적절한 의사결정을 내릴 수 있도록 하는 베이지안 네트워크기반 온톨로지 추론 방법을 제안한다. 제안하는 방법에서는 온톨로지의 클래스 객체를 베이지안 네트워크의 노드로 나타내고, 객체 속성(object property)을 아크로 표현함으로써, 확률적 추론이 가능한 온톨로지를 제공한다. 몇 가지 시나리오와 설계 복잡도 분석을 통해서 제안하는 방법의 유용성을 평가한다.

  • PDF

An Automatic Document Classification with Bayesian Learning (베이지안 학습을 이용한 문서의 자동분류)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • As the number of online documents increases enormously with the expansion of information technology, the importance of automatic document classification is greatly enlarged. In this paper, an automatic document classification method is investigated and applied to UseNet 20 newsgroup articles to test its efficacy. The classification system uses Naive Bayes classification algorithm and the experimental result shows that a randomly selected newsgroup arcicle can be classified into its own category over 77% accuracy.

  • PDF

A Window-Based Classification of Stream Data (스트림 데이터의 윈도우 기반 분류)

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Seo, Sung-Bo;Ryu, Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.47-50
    • /
    • 2005
  • 센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링 후 처리되기 때문에 기존의 투플 기반의 데이터 분류 기법에 적합하지 않다. 따라서 이 논문에서는 윈도우 기반의 스트림 데이터 분류를 위해 각 속성의 평균과 표준편차 값을 이용하여 투플 기반으로 변환하는 기법을 제안한다. 제안된 기법의 타당성은 투플 기반 데이터 분류 기법(의사결정트리, 단순 베이지안 분류기, 베이지안 신뢰 네트워크)에 의한 정확도 측정에 기반 한다. 로봇에서 수집된 센서 데이터를 이용한 실험 결과, 높은 정확도로 제안된 기법이 타당함을 증명하였으며 베이지안 신뢰 네트워크 기법이 다른 기법에 비해 우수함을 발견하였다.

  • PDF

Spam-Mail Filtering System by Using Naive Bayesian Classifier and Mail Address Validation Check (나이브 베이지안 분류자와 메일 주소 유효성 검사를 이용한 스팸 메일 필터링 시스템)

  • Lim Jung-Taek;Kim Hyung-Joon;Kang Seung-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.523-525
    • /
    • 2005
  • 본 논문에서는 가중치가 부여된 나이브 베이지안 분류자와 스팸 메일의 특성을 이용한 주소 유효성 검사를 결합하여 필터링하는 방식의 스팸 메일 필터링 시스템을 제안하였다. 주소 유효성 검사를 통해 스팸 메일을 효율적으로 필터링 할 수 있으며, 나이브 베이지안 분류자에 가중치를 부여함으로써 더욱 효과적인 분류를 할 수 있다. 또한, 각 요인의 중요도에 따라 다른 비중을 부여함으로써 메일의 특성을 고려한 필터링 환경을 구현하였다. 실험에서는 제안하는 요인들이 실제로 필터링 성능 향상에 어떤 영향을 미치는지 살펴보고 최적의 시스템 성능을 측정하였다.

  • PDF

A Study on Traceability Management Using Bayesian Network (베이지안 네트워크를 이용한 이력추적관리 방법에 관한 연구)

  • Cho soung-jin;Her Chul-hoi;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.331-334
    • /
    • 2005
  • 임베디드 기술의 발전과 유비쿼터스 환경이 점차 확산되면서 상품의 유통 과정이 다양하게 변화되고 있다. 상품에 대한 소비자의 요구는 생산정보를 직접 확인하고 상품을 구매할 수 있도록 하여 다양한 문제 발생시 원산지와 유통경로를 추적할 수 있는 이력 추적 관리 시스템(Traceability Management System)이 요구되고 있다. 본 논문에서는 유비쿼터스 환경에서 상품에 대한 신뢰성을 향상시키고 생산자의 정보 및 제조, 유통과정을 소비자가 추적할 수 있도록 베이지안 네트워크를 이용하여 상품의 이력추적관리 방법을 제안하고 시뮬레이션을 통하여 확인하였다.

  • PDF

A Purchase Pattern Analysis Using Bayesian Network and Neural Network (베이지안 네트워크와 신경망을 이용한 구매 패턴 분석)

  • Hwang Jeong-Sik;Pi Su-Young;Son Chang-Sik;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.323-326
    • /
    • 2005
  • 실세계에서 일어나는 문제는 매우 복잡하고 다양하기 때문에 예측하기가 어렵고 다양한 상황들이 발생한다. 특히, 소비자의 구매에 따르는 행동을 분석하고 소비자의 다양한 기호를 예측하기 위해서는 구매자의 심리적 요인과 내적 요인이 많은 영향을 미치게 된다. 이러한 요인들은 직접적인 정보 처리가 어렵기 때문에 정보의 불확실성을 취급하는 기술이 필요하다. 따라서 본 논문에서는 상품 구매에 따르는 소비자의 구매행동 패턴을 분석하기 위해 판매자의 노하우와 소비자의 구매의식을 조사하여 이 데이터를 바탕으로 베이지안 네트워크를 구성하고 구매패턴을 분류하는 방법을 제안하였다. 특히, 베이지안 네트워크를 이용하여 불필요한 속성을 가진 데이터를 제거한 후 코호넨의 SOM을 이용하여 소비자의 구매 패턴을 분류하도록 하였다.

  • PDF

A Design of the Small File Grouping System Based on Naive Bayesian Classifier Model (나이브 베이지안 분류기 모델 기반의 소용량 파일 그룹화 시스템 설계)

  • Kim, Min-Jae;Kim, Kyung-Tae;Youn, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.221-222
    • /
    • 2014
  • 빠른 웹의 성장으로 대용량 데이터를 효과적으로 처리할 수 있는 플랫폼 기술에 대한 관심이 높아지고 있다. 특히, HDFS는 이상적인 분산 파일 시스템으로 각광받고 있으며 대용량 파일의 처리를 목적으로 개발되었다. 하지만, 실제 파일들의 집합에서 소용량 파일이 차지하는 비중은 높은 편이다. 많은 수의 소용량 파일은 HDFS 성능 감소에 치명적인 원인이 된다. 많은 수의 소용량 파일들이 HDFS에 저장된다면 NameNode의 메모리 소비량이 증가하게 되며 많은 수의 소용량 파일은 많은 수의 DataNode와 NameNode를 요구하므로 상대적으로 처리시간이 많이 소모된다. 따라서 본 논문에서는 HDFS에서 소용량 파일의 저장과 액세스 효율성을 향상시키기 위하여 나이브 베이지안 분류기 알고리즘을 적용한 파일 그룹화 시스템을 설계하였다.

  • PDF

Optimization of Bayesian Networks Aggregation Using Genetic Algorithm (진화 알고리즘을 이용한 베이지안 네트워크 병합의 최적화)

  • Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.121-123
    • /
    • 2006
  • 베이지안 네트워크 병합은 여러 개의 베이지안 네트워크를 하나의 네트워크로 합치는 것을 말한다. 일반적으로 사용되는 병합 알고리즘은 병합 순서에 따라 최종결과 네트워크의 복잡도가 달라지는 문제를 갖고 있고, 최종 병합 네트워크의 에지 수를 최소화하는 병합 순서를 찾는 것은 NP-hard라고 증명되었다. 본 논문에서는 최적의 병합 순서를 결정하기 위해 진화 알고리즘을 사용하는 방법을 제안한다. 해공간 분석을 통해 permutation index 표현방법이 해탐색에 유리함을 보이고 이를 이용한 진화 알고리즘을 제안한다. 실험결과, 기존의 휴리스틱과 greedy 탐색 방법에 비해 제안한 방법이 우수한 성능을 보였다.

  • PDF

Hierarchical Bayesian Networks based on Activity for Localizing Hidden Target Objects in Indoor Environment (실내 환경에서 보이지 않는 목표 물체를 탐색하기 위한 활동기반 계층적 베이지안 네트워크)

  • Song Youn-Suk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.616-618
    • /
    • 2005
  • 서비스 로봇 분야에서 물체를 인식하고 장면을 이해하는 것은 매우 중요하다. 전통적인 방법들은 기하학적 모델을 기반으로 물체를 인식하였으나 불확실하고 동적인 환경에서 이러한 방법은 한계를 갖는다. 이에 최근 지식 기반의 접근 방법을 통해 이러한 부분을 보완하는 연구가 이루어지고 있다. 본 논문에서는 효과적인 물체 탐색을 위해 베이지안 네트워크를 사용하여 대상 물체의 존재 여부를 추론하는 방법을 제안한다. 이를 위해 트리구조의 계층적 베이지안 네트워크를 사용하였고 물체들의 관계를 활동을 기준으로 모델링 하였다. 6가지 장소를 기반으로 한 실험 결과, $86.5\%$의 정확도를 보여주었다.

  • PDF

Implementation of Web-based Document Classification System using Naïve Classifier (Naïve 분류기를 이용한 웹 기반 문서 분류기 구현)

  • Park, Jea-Hyun;Choi, Kwang-Bok;Han, Ju-Hyun;Choi, Won-Jong;Yang, Jaeyoung;Choi, Joongmin
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.343-346
    • /
    • 2004
  • 베이지안 확률 모형은 문서 분류에서 널리 사용되는 이론이다. 그러나, 실제로 베이지안 이론에 기초하여 만들어진 시스템은 처리 시간이 많이 소요된다는 단점을 가지고 있다. 이 논문에서는 문서 분류 작업에 있어 기존의 베이지안 모형을 구현함과 동시에 여러 가지 방법을 통해 시간적인 측면을 개선한 시스템을 구현하였다.

  • PDF