• Title/Summary/Keyword: 베이지안 선형 회귀 모델

Search Result 3, Processing Time 0.028 seconds

A Bayesian Regression Model to Estimate the Deterioration Rate of Track Irregularities (궤도틀림 진전율 추정을 위한 베이지안 회귀분석 모형 연구)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • This study considered how to estimate the deterioration rate of the track quality index, which represents track geometric irregularity. Most existing studies have used a simple linear regression and regarded the slope of the regression equation as the progress rate. In this paper, we present a Bayesian approach to estimate the track irregularity progress. This Bayesian approach has many advantages, among which the biggest is that it can formally include the prior distribution of parameters which can be derived from historic data or from expert experiences; then, the rate can be expressed as a probability distribution. We investigated the possibility of applying the Bayesian method to the estimation of the deterioration rate by comparing our bayesian approach to the conventional linear regression approach.

Hydrometeorological Drivers of Particulate Matter Using Satellite and Reanalysis Data (인공위성 및 재분석 자료를 이용한 미세먼지 농도와 수문기상인자의 상관성 분석)

  • Lee, Seul Chan;Jeong, Jae Hwan;Choi, Min Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.100-100
    • /
    • 2019
  • 최근 대기 중 미세먼지의 농도가 높은 일수가 급증하면서, 미세먼지를 저감하고자 하는 연구가 활발히 이루어지고 있다. 미세먼지는 주로 자동차 혹은 공장 등 인간 활동에 의한 오염물질 배출에 의해 발생하는 것으로 알려져 있으며, 태양복사에너지, 토양수분, 강우, 풍속 등의 수문기상학적 인자에 의해 발생, 이동, 소멸의 과정을 거친다. 현재 우리나라에서는 미세먼지 농도를 관측하기 위해 지점 기반의 관측소를 운영하고 있으며, 관측소가 위치하지 않은 지역의 미세먼지 농도는 선형 보간법 등을 활용한 내삽 기법을 통해 제공하고 있다. 그러나 미세먼지 농도는 다양한 수문기상인자들의 영향에 의한 차이가 크게 나타나기 때문에 지점 기반의 자료로는 해당 지역의 미세먼지 농도를 추정하는 데 어려움이 많다. 본 연구에서는 미세먼지의 공간적인 분포를 추정하고자 MODerate resolution Imaging Spectroradiometer (MODIS) 에어로졸 자료와 Global Land Data Assimilation System (GLDAS) 수문기상인자를 활용하여 미세먼지 농도에 영향을 주는 것으로 판단되는 다양한 수문기상인자들과의 상관성을 분석하였다. 미세먼지와 각 인자간의 상관성을 분석하여 높은 상관성을 갖는 수문기상인자들을 도출하고 최적의 선형회귀분석 모델을 구축하기 위해 베이지안 모델 평균(Bayesian Model Averaging, BMA)을 사용하였으며, 지점 데이터와의 비교를 통해 활용성을 검증하였다. 전체적으로 수문기상인자를 사용한 선형회귀분석 결과에서는 미세먼지농도 변화의 경향을 반영하고 있는 것을 확인할 수 있었으나, 계절별, 지역별 등 대기 특성을 고려하지 않아 각 기간의 급격한 농도 변화를 감지하기에 어려움이 있었다. 이러한 연구를 바탕으로 수문기상인자와 미세먼지 농도의 패턴이 더욱 정확히 분석된다면, 미세먼지 농도 모니터링과 정확한 예보 시스템의 구축에 효과적으로 활용 될 것으로 기대된다.

  • PDF

Probabilistic Time Series Forecast of VLOC Model Using Bayesian Inference (베이지안 추론을 이용한 VLOC 모형선 구조응답의 확률론적 시계열 예측)

  • Son, Jaehyeon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.305-311
    • /
    • 2020
  • This study presents a probabilistic time series forecast of ship structural response using Bayesian inference combined with Volterra linear model. The structural response of a ship exposed to irregular wave excitation was represented by a linear Volterra model and unknown uncertainties were taken care by probability distribution of time series. To achieve the goal, Volterra series of first order was expanded to a linear combination of Laguerre functions and the probability distribution of Laguerre coefficients is estimated using the prepared data by treating Laguerre coefficients as random variables. In order to check the validity of the proposed methodology, it was applied to a linear oscillator model containing damping uncertainties, and also applied to model test data obtained by segmented hull model of 400,000 DWT VLOC as a practical problem.