• Title/Summary/Keyword: 베이지안 분류자

Search Result 30, Processing Time 0.031 seconds

Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm (Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류)

  • Go, Su-Jeong;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF

A Study On Filtering of Newspaper Article by Using Bayesian Classifier (베이지안 분류기를 이용한 신문기사 필터링)

  • 손기준;노태길;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.490-492
    • /
    • 2002
  • 본 논문에서는 필터링 문제를 이진 문서 분류 문제로 보고 신문기사 필터링에 베이지안 분류자를 사용한다. 신문 기사 필터링 문제에서 베이지안 분류자를 사용할 경우 학습 문서가 고정되어 있지 않기 때문에 여러 가지 파라미터를 사용하여 실험을 하였다. 실험 결과 베이지안 이진 분류기는 제한된 학습 문서에서 더 나은 성능을 보였고 해당 문서 집합에서 10%이상 비율의 문서를 사용자가 선택해야 함을 알 수 있었다.

  • PDF

Spam-Mail Filtering System Using Weighted Bayesian Classifier (가중치가 부여된 베이지안 분류자를 이용한 스팸 메일 필터링 시스템)

  • 김현준;정재은;조근식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1092-1100
    • /
    • 2004
  • An E-mails have regarded as one of the most popular methods for exchanging information because of easy usage and low cost. Meanwhile, exponentially growing unwanted mails in user's mailbox have been raised as main problem. Recognizing this issue, Korean government established a law in order to prevent e-mail abuse. In this paper we suggest hybrid spam mail filtering system using weighted Bayesian classifier which is extended from naive Bayesian classifier by adding the concept of preprocessing and intelligent agents. This system can classify spam mails automatically by using training data without manual definition of message rules. Particularly, we improved filtering efficiency by imposing weight on some character by feature extraction from spam mails. Finally, we show efficiency comparison among four cases - naive Bayesian, weighting on e-mail header, weighting on HTML tags, weighting on hyperlinks and combining all of four cases. As compared with naive Bayesian classifier, the proposed system obtained 5.7% decreased precision, while the recall and F-measure of this system increased by 33.3% and 31.2%, respectively.

Spam-mail Filtering System Using Naive Bayesian Classifier and Message Rule (나이브 베이지안 분류자와 메세지 규칙을 이용한 스팸메일 필터링 시스템)

  • 조한철;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.223-225
    • /
    • 2002
  • 인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.

  • PDF

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF

Spam-Mail Filtering System by Using Naive Bayesian Classifier and Mail Address Validation Check (나이브 베이지안 분류자와 메일 주소 유효성 검사를 이용한 스팸 메일 필터링 시스템)

  • Lim Jung-Taek;Kim Hyung-Joon;Kang Seung-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.523-525
    • /
    • 2005
  • 본 논문에서는 가중치가 부여된 나이브 베이지안 분류자와 스팸 메일의 특성을 이용한 주소 유효성 검사를 결합하여 필터링하는 방식의 스팸 메일 필터링 시스템을 제안하였다. 주소 유효성 검사를 통해 스팸 메일을 효율적으로 필터링 할 수 있으며, 나이브 베이지안 분류자에 가중치를 부여함으로써 더욱 효과적인 분류를 할 수 있다. 또한, 각 요인의 중요도에 따라 다른 비중을 부여함으로써 메일의 특성을 고려한 필터링 환경을 구현하였다. 실험에서는 제안하는 요인들이 실제로 필터링 성능 향상에 어떤 영향을 미치는지 살펴보고 최적의 시스템 성능을 측정하였다.

  • PDF

An Automatic Classification of Korean Documents Using Weight for Keywords of Document and Corpus : Bayesian classifier (문서의 주제어별 가중치와 말뭉치를 이용한 한국어 문서의 자동분류 : 베이지안 분류자)

  • 허준희;고수정;김태용;최준혁;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.154-156
    • /
    • 1999
  • 문서 분류는 미리 정의된 두 개 또는 그 이상의 클래스에 새로 생성되는 객체들을 할당하는 방법이다. 문서의 자동 분류에 대한 연구는 오래 전부터 연구되어 왔지만 한국어에 대한 적용 및 연구는 다른 분야에 비해 아직까지 활발히 이루어지지 않고 있다. 본 논문에서는 문서를 자동으로 분류하기 위해 문서의 주제어에 가중치를 부여하고, 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 주제어들과의 상호정보에 의해 추출된 단어를 사용하여 문서를 표현한 후, 가중치를 부여한 문서의 주제어에 베이지안 분류자를 사용하여 문서분류를 수행한다. 실험은 한국어 정보검색 실험용 데이터 집합인 KTset95 문서 4,414개 중 1,300개의 문서를 학습 집합으로, 1,000개의 문서를 분류에 대한 검증 집합으로 사용하였다. 실험 결과, 순수 베이지안 확률을 사용한 기존의 방법보다 실험 집합과 검증 집합에서 각각 1.92%, 4.3% 향상된 분류 정확도를 얻었다.

  • PDF

Document Classification using Weighted Associative Classifier (가중치가 부여된 연관 규칙을 이용한 문서 분류)

  • 김흥남;이기성;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.154-156
    • /
    • 2003
  • 인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.

  • PDF

Spam Mail Filtering System using Ontology and Semantic Enrichment (온톨로지와 Semantic Enrichment를 이용한 스팸 메일 필터링 시스템)

  • 김현준;김흥남;정재은;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.553-555
    • /
    • 2004
  • 최근 인터넷의 급속한 성장과 더불어 전자메일(I-Mail)은 의사교환의 필수적인 매체로 사용 되어지고 있다. 그러나 편리하고 비용이 들지 앉는 장정을 이용해 엄청난 양의 스맴 메일이 매일같이 솎아져 오고, 이를 해결하기 위한 다양한 연구들이 제시되어져 왔다. 특히. 문서 분류에 널리 쓰이는 베이지안 분류자(Bayesian classifier)가 가장 널리 이용되어지고 있는데, 정확도와 재현율에서 비교적 우수한 성능을 보이고 있다. 그러나 몇 가지 문제점을 갖고 있는데, 첫째, 사전에 사용자에 의해 스팸. 논스팸 메일에 대한 충분한 학습이 선행되어야 하는 정, 둘째, 필터링을 위한 연산시간이 소요되는 점, 셋째, 필터링의 대상이 되는 메일 본문의 내용이 적을 경우 정확한 필터링이 어렵다는 정 등의 문제점이 있다. 본 논문에서는 마지막 문제점으로 지적된 메일 본문의 내용이 적을 경우 즉, 연산을 위한 특징적인 단어들의 부족으로 정확한 분류가 불가능한 경우의 해결방안으로 온틀로지와 Semantic Enrichment 기법을 이용한 스팸 메일 필터링 시스템을 제안한다. 실험 결과, 제안하는 시스템이 베이지안 분류자를 이용한 분류 시스템보다 정확도에서 4.1%, 재현율에서 10.5%. 그리고 F-measure에서 7.64%의 성능향상을 보였다.

  • PDF

A Purchase Pattern Analysis Using Bayesian Network and Neural Network (베이지안 네트워크와 신경망을 이용한 구매 패턴 분석)

  • Hwang Jeong-Sik;Pi Su-Young;Son Chang-Sik;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.323-326
    • /
    • 2005
  • 실세계에서 일어나는 문제는 매우 복잡하고 다양하기 때문에 예측하기가 어렵고 다양한 상황들이 발생한다. 특히, 소비자의 구매에 따르는 행동을 분석하고 소비자의 다양한 기호를 예측하기 위해서는 구매자의 심리적 요인과 내적 요인이 많은 영향을 미치게 된다. 이러한 요인들은 직접적인 정보 처리가 어렵기 때문에 정보의 불확실성을 취급하는 기술이 필요하다. 따라서 본 논문에서는 상품 구매에 따르는 소비자의 구매행동 패턴을 분석하기 위해 판매자의 노하우와 소비자의 구매의식을 조사하여 이 데이터를 바탕으로 베이지안 네트워크를 구성하고 구매패턴을 분류하는 방법을 제안하였다. 특히, 베이지안 네트워크를 이용하여 불필요한 속성을 가진 데이터를 제거한 후 코호넨의 SOM을 이용하여 소비자의 구매 패턴을 분류하도록 하였다.

  • PDF