• Title/Summary/Keyword: 베이지안네트워크

Search Result 276, Processing Time 0.026 seconds

Developing a Bayesian Network Model for Real-time Project Risk Management (실시간 프로젝트 위험관리를 위한 베이지안 네트워크 모형의 개발)

  • Kim, Jee-Young;Ahn, Sun-Eung
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Most companies have been increasing temporary work projects to maximize the usage of their resources. They also have been developing the effective techniques for analyzing and managing the state of the projects. In order to monitor the state of a project in real-time and predict the project's future state more accurately, this paper suggests the Bayesian Network (BN) as a tool for discovering the causes of project risk and presenting the failure probability of the project. The proposed BN modeling method with consideration of the Earned Value Management (EVM) method shows how to induce the predictive and conditional probability of the risk occurrence in the future. The advantages of the suggested model are (1) that the cause of a project risk can be easily figured out via the BN, (2) that the future value of the project can be sufficiently increased by updating relevant components of the project, and (3) that more credible prediction can be made in the similar and future situation by using the data obtained in current analysis. A numerical example is also given.

Effective real-time identification using Bayesian statistical methods gaze Network (베이지안 통계적 방안 네트워크를 이용한 효과적인 실시간 시선 식별)

  • Kim, Sung-Hong;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.331-338
    • /
    • 2016
  • In this paper, we propose a GRNN(: Generalized Regression Neural Network) algorithms for new eyes and face recognition identification system to solve the points that need corrective action in accordance with the existing problems of facial movements gaze upon it difficult to identify the user and. Using a Kalman filter structural information elements of a face feature to determine the authenticity of the face was estimated future location using the location information of the current head and the treatment time is relatively fast horizontal and vertical elements of the face using a histogram analysis the detected. And the light obtained by configuring the infrared illuminator pupil effects in real-time detection of the pupil, the pupil tracking was - to extract the text print vector.

Fuzzy Belief Network : Approximate Reasoning System Using The Possiblity (Fuzzy Belief Network : 가능성을 이용한 근사추론 시스템)

  • 조상엽;김기태
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.1
    • /
    • pp.261-294
    • /
    • 1993
  • Most of expert systems,as a rule-based system,should be convenient to modify a rule and to insert a new rule, which is called modularity of rules. When we think correlated evidences in expert systems. conventional systems are too local to recognize the common origin of the information, and they would update the belief of the hypothesis as if it were supposed by independence soureces. In this paper to overcome such drawbacks we propose Fuzzy Belief Network which is based on the Beysian Network which provide the modulartiy between rules. To build Fuzzy Belief Network, we define nodes and links and propose algorithms for data fusion in individual node and for propagation belief value obtained as a result of data fusion.

A Development of Simultaneous Stochastic Simulation Model for Precipitation, Temperature, Humidity and Radiation (강수-온도-습도-일조량 연동 추계학적 모의기법 개발)

  • So, Byung-Jin;Kwon, Hyun-Han;Park, Sae-Hoon;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.386-386
    • /
    • 2011
  • 다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

Facial Behavior Recognition for Driver's Fatigue Detection (운전자 피로 감지를 위한 얼굴 동작 인식)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.756-760
    • /
    • 2010
  • This paper is proposed to an novel facial behavior recognition system for driver's fatigue detection. Facial behavior is shown in various facial feature such as head expression, head pose, gaze, wrinkles. But it is very difficult to clearly discriminate a certain behavior by the obtained facial feature. Because, the behavior of a person is complicated and the face representing behavior is vague in providing enough information. The proposed system for facial behavior recognition first performs detection facial feature such as eye tracking, facial feature tracking, furrow detection, head orientation estimation, head motion detection and indicates the obtained feature by AU of FACS. On the basis of the obtained AU, it infers probability each state occur through Bayesian network.

Information Recommendation in Mobile Environment using a Multi-Criteria Decision Making (다기준 의사 결정 방법을 이용한 모바일 환경에서의 정보추천)

  • Park, Han-Saem;Park, Moon-Hee;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.306-310
    • /
    • 2008
  • Since the preference for information recommendation service can change according to the context, we should know the user context before providing information recommendation. This paper proposes recommender system that considers multi-user preference in mobile environment and attempted to apply it to restaurant recommendation. To model the preference of individual users in mobile environment, we have used Bayesian network, and restaurant recommendation mostly should consider not an individual user but several users, so this paper has used AHP of multi-criteria decision making process to obtain the preference of several users based on one of individual users. For experiments, we conducted recommendation in 10 different situations, and finally, we confirmed that the proposed system was evaluated as a good one using a usability test of SUS.

Chaff Echo Detecting and Removing Method using Naive Bayesian Network (나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법)

  • Lee, Hansoo;Yu, Jungwon;Park, Jichul;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

A Study on the Improvement of Bayesian networks in e-Trade (전자무역의 베이지안 네트워크 개선방안에 관한 연구)

  • Jeong, Boon-Do
    • International Commerce and Information Review
    • /
    • v.9 no.3
    • /
    • pp.305-320
    • /
    • 2007
  • With expanded use of B2B(between enterprises), B2G(between enterprises and government) and EDI(Electronic Data Interchange), and increased amount of available network information and information protection threat, as it was judged that security can not be perfectly assured only with security technology such as electronic signature/authorization and access control, Bayesian networks have been developed for protection of information. Therefore, this study speculates Bayesian networks system, centering on ERP(Enterprise Resource Planning). The Bayesian networks system is one of the methods to resolve uncertainty in electronic data interchange and is applied to overcome uncertainty of abnormal invasion detection in ERP. Bayesian networks are applied to construct profiling for system call and network data, and simulate against abnormal invasion detection. The host-based abnormal invasion detection system in electronic trade analyses system call, applies Bayesian probability values, and constructs normal behavior profile to detect abnormal behaviors. This study assumes before and after of delivery behavior of the electronic document through Bayesian probability value and expresses before and after of the delivery behavior or events based on Bayesian networks. Therefore, profiling process using Bayesian networks can be applied for abnormal invasion detection based on host and network. In respect to transmission and reception of electronic documents, we need further studies on standards that classify abnormal invasion of various patterns in ERP and evaluate them by Bayesian probability values, and on classification of B2B invasion pattern genealogy to effectively detect deformed abnormal invasion patterns.

  • PDF

The Effects of a Peer Agent on Achievement and Self-Efficacy in Programming Education (프로그래밍 교육에서 동료 에이전트가 학업성취도와 자기효능감에 미치는 영향)

  • Han, Keun-Woo;Lee, Eun-Kyoung;Lee, Young-Jun
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • We have developed a peer agent to support programming learning and analyzed its educational effects in a programming course. The agent acts as a tutor or a tutee. The role of a tutor/tutee is like the role of a navigator/driver in pair programming. While students are learning with the peer agent, the students' programming abilities are modeled. Based on the student's model, the peer agent provides appropriate feedbacks and contents to the learner. The peer agent gives positive effects on learners' achievement and self-efficacy in a programming course. It means that the peer agent system helps the learner in an affective domain as well as a cognitive domain.

  • PDF

A Target Position Reasoning System for Disaster Response Robot based on Bayesian Network (베이지안 네트워크 기반 재난 대응 로봇의 탐색 목표 추론 시스템)

  • Yang, Kyon-Mo;Seo, Kap-Ho;Lee, Jongil;Lee, Seokjae;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we introduce a target position reasoning system based on Bayesian network that selects destinations of robots on a map to explore compound disaster environments. Compound disaster accidents have hazardous conditions because of a low visibility and a high temperature. Before firefighters enter the environment, the robots notify information in advance, such as victim's positions, number of victims, and status of debris of building. The problem of the previous system is that the system requires a target position to operate the robots and the firefighter need to learn how to use the robot. However, selecting the target position is not easy because of the information gap between eyewitness accounts and map coordinates. In addition, learning the technique how to use the robots needs a lot of time and money. The proposed system infers the target area using Bayesian network and selects proper x, y coordinates on the map based on image processing methods of the map. To verify the proposed system, we designed three example scenarios based on eyewetinees testimonies and compared time consumption between human and the system. In addition, we evaluate the system usability by 40 subjects.