• 제목/요약/키워드: 베이즈 법칙

검색결과 7건 처리시간 0.018초

베이즈 법칙을 활용한 미니탭 매크로 - 한글 미니탭 Release 14를 이용 -

  • 백호유;이정미
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.133-139
    • /
    • 2005
  • 베이즈 법칙에서는 사전확률과 우도가 주어지고 어떤 실험결과가 일어났을 때 사후확률을 계산한다. 이러한 사후확률의 계산 문제를 미니탭 매크로를 이용하여 쉽게 계산할 수 있다. 또한 일련의 독립적이고 연속적인 실험결과에 따르는 사후확률도 편리하게 계산할 수 있다. 최근에는 미니탭 한글 Release 14가 출시되어 한글로 결과를 나타낼 수 있도록 매크로를 작성할 수 있다.

  • PDF

베이즈 법칙의 활용을 위한 엑셀 매크로 (Excel macro for applying Bayes' rule)

  • 김재현;백호유
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1183-1197
    • /
    • 2011
  • 베이즈 법칙에서는 사전확률과 우도가 주어지고 어떤 실험결과가 일어났을 때 사후확률을 계산한다. 이러한 사후확률의 계산 문제를 엑셀 매크로를 이용하여 쉽게 계산할 수 있다. 또한 일련의 독립적이고 연속적인 실험결과에 따르는 사후확률도 편리하게 계산할 수 있다. 특히, 엑셀 매크로를 작성하면 작업창에서 반복된 계산의 입력과 출력이 쉽게 이루어진다. 본 논문에서는 베이즈 법칙의 활용을 위해서 엑셀 매크로를 작성하고 그것의 사용 예를 들었다.

엑셀 매크로기능을 이용한 베이즈 정리 교육도구 개발 (Development of Bayes' rule education tool with Excel Macro)

  • 최현석;하정철
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권5호
    • /
    • pp.905-912
    • /
    • 2012
  • 본 논문에서는 엑셀매크로로 베이즈 정리 교육도구를 개발하여 사용의 예를 소개한다. 주어진 어느 한 사건이 발생했을 때 그 사건이 특정조건하에서 발생되었는지 여부에 관심이 있다. 이런 경우의 확률계산에 사용할 수 있는 것이 베이즈 정리이다. 베이즈 정리는 새롭게 얻어진 부가적인 정보를 기초로 통계적 의사결정을 하는데 매우 유용한 정리이다. 베이즈 정리를 중간과정과 설명을 통해 학습자 스스로 효율적으로 학습할 수 있도록 개발한 교육도구를 소개한다. 조건부확률, 곱셈법칙, 전확률 공식, 사전확률, 사후확률 등에 대한 설명과 활용 예를 단계적 학습을 통해 이해할 수 있도록 하였다. 결과가 나오기까지의 과정을 단계적인 개념설명과 그림으로 표현하여 단계적, 시각적인 학습이 되도록 하였다. 한 화면상에서 계산과정과 결과를 나타내도록 하기 위하여 분할 2개와 3개에 대하여 엑셀 자체에서 제공되는 분석기능과 비주얼베이직으로 작성된 프로그램을 연결하여 명령단추를 누르면 매크로가 실행되게 하였다.

한국어 음소인식을 위한 기준 프레임 추출 (Typical Frame Etraction for Korean Phoneme Recognition)

  • 김범국
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.121-124
    • /
    • 1994
  • 음소를 인식의 기본으로 하는 한국어 음성인식 시스템을 구현하기 위한 기초 연구의 일환으로서 각 음소의 특징 가장 잘 표현하는 기준프레임 추출을 위한 연구를 수행하였다. 이를 위하여 먼저 선행 실험과 분산비 분석을 통해서 인식에 필요로한 시간 패턴의 길이를 추출한 후 이를 바탕으로 통계적 인식방법인 베이즈 결정법칙을 이용하여 시단 프레임으로부터 3프레임씩 시점을 1프레임씩 옮기면서 인식 실험을 해?여, 각 음소별 특징이 가장 풍부한 기준 프레임을 추출하였다. 그리고 이 기준 프레임을 중심으로 각 음소군별 인식 실험을 수행하여 그 결과를 시단을 기준으로 한 경우와 비교 검토하고 한국어 전 음소별로 확장하여 인식 실험을 실시하였다. 이 실험 결과 모음의 경우 시단으로부터 5프레임, 파열음은 시단에서부터 5프레임사이, 마찰음은 3프레임에서부터 10프레임까지, 파찰음은 5프레임까지, 비음과 유음의 경우 초성은 시단 프레임에서 6프레임, 종성은 종단으로부터 전 4프레임 구간이 인식률이 높게 나타나 이 부분의 특징이 인식에 가장 유효함을 알 수 있었다.

  • PDF

음소 인식을 위한 특징 추출의 위치와 지속 시간 길이에 관한 연구 (A Study on Duration Length and Place of Feature Extraction for Phoneme Recognition)

  • 김범국;정현열
    • 한국음향학회지
    • /
    • 제13권4호
    • /
    • pp.32-39
    • /
    • 1994
  • 한국어 음성인식 시스템을 구현하기 위한 기초 연구로서 한국어 전음소를 대상으로 1) 각 음소의 특성을 가장 잘 나타내는 최적의 위치, 2) 최고의 인식률을 얻기 위한 적당한 지속시간길이를 찾기위해서 음소인식을 수행하였다. 인식실험을 위해 특징파라메터로 21차원 켑스트럼계수를 이용하여 베이즈 결정법칙으로서 세화자에 대한 종속인식실험을 행하였다. 인식실험결과 최고의 인식률을 보이는 최적의 특징추출의 위치는 모음에서는 10~50ms, 마찰음및 파찰음은 40~100ms, 비음, 유음은 10~50ms, 그리고 파열음은 10~50ms임을 알 수 있었다. 또, 35 전음소를 대상으로한 인식에 있어서는 최고의 인식률을 얻기위한 지속시간 정 보의 길이는 60~70ms정도가 충분함을 알 수 있었다.

  • PDF

fMRI 데이터에 적용한 인디언 뷔페 프로세스 닮은 성분 분석법 (Indian Buffet Process Inspired Component Analysis for fMRI Data)

  • 김준식;김은솔;임병권;이충연;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.191-194
    • /
    • 2011
  • 문서를 이루는 단어들의 빈도수가 지수법칙(power law)를 따른다는 지프의 법칩(Zipf's law)이 있다. 이러한 단어분포를 고려하여 문서의 토픽을 찾아내는 기계학습법이 디리쉴레 프로세스(Dirichlet process) 이다. 이를 발전시켜서 데이터의 잠재 요인(latent factor)들을 베이즈 확률모델에 기반한 샘플링 바탕으로 찾는 방법이 인디언 뷔페 과정(Indian buffet process) 이다. 우리는 25가지의 특징(feature)들에 대한 점수(rating)들이 볼드(blood oxygen dependent level) 신호와 함께 주어지는 PBAIC 2007 데이터에 주성분 분석법(principal component analysis)를 적용했다. PBAIC 2007 데이터는 비디오 게임을 수행하며 기능적뇌영상(functional magnetic resonance imaging, fMRI) 촬영을 하여 얻어진 공개데이터이다. 우리의 연구에서는 주성분 분석법을 이용하여 10개의 독립 성분(independent component)들을 찾았다. 그리고 1.75초 마다 촬영된 BOLD 신호와 10개의 고유벡터(eigenvector)들간의 내적을 취하여 가중치(weight)를 구하였다. 성분들의 가중치를 낮은 순서로 정렬함으로써 각 시간마다 주도적으로 영향을 미치는 성분들을 알아낼 수 있었다.

자동차보험 신뢰도 적용에 대한 베이지안 추론 방식 연구 (A study of Bayesian inference on auto insurance credibility application)

  • 김명준;김영화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.689-699
    • /
    • 2013
  • 본 연구는 가격 경쟁으로 인하여 최근 들어 요율 세분화가 심화되고 있는 자동차보험 시장에서, 부분 신뢰도의 적용 대상에 대한 경험적 사전분포 (empirical prior distribution) 함수 또는 무정보적 사전분포 (noninformative prior distribution) 정보의 가정을 통한 신뢰도 산출 방식에 대하여 살펴보았다. 요율 세분화의 확대로 가격 산출 단위의 수가 증가될 경우, 부분 신뢰도의 적용 대상은 점차 증가되게 될 것으로 판단되기 때문에, 기존에 제시된 신뢰도 적용 방식을 베이지안 프레임에서 적용, 추론함으로써 보다 다양하고 정교한 방식으로 그 활용 범위를 넓히고자 한다. 즉, 경험적으로 사용되는 사전 분포함수 또는 무정보적 사전 정보를 통하여 적절한 사후분포 (posterior distribution)함수를 도출하고 오차를 최소화하는 베이즈 통계량을 적용한 신뢰도를 추정하여 적용함으로써, 위험도 예측에 있어 기존에 제시된 방법과 비교하여 그 효용성을 입증하고자 한다. 현재 가장 많이 활용되는 제곱근 법칙 (square root rule)의 신뢰도 추정 방식에 베이지안 추론에서 도출된 통계량을 반영한 결과를 분석하여 실질적인 위험도에 수렴하는 수준을 비교하게 된다. 이는 이론적으로 위험도 예측에서 오차를 줄이는 방식에 대한 대안 제시와 더불어 신뢰도 적용 방식에 대한 추가적인 활용 대안을 보험업계에 제시함으로써 요율 세분화로 인한 부분 신뢰도 적용방식에 대한 그 이해와 활용의 폭을 넓히고자 한다.