• 제목/요약/키워드: 베이시안 확률모델

검색결과 11건 처리시간 0.03초

HMM을 기반으로 한 사전 확률의 문제점을 해결하기 위해 베이시안 기법 어휘 인식 모델에의 사후 확률을 융합한 잡음 제거 (Noise Removal using a Convergence of the posteriori probability of the Bayesian techniques vocabulary recognition model to solve the problems of the prior probability based on HMM)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권8호
    • /
    • pp.295-300
    • /
    • 2015
  • 사전 확률분포를 모델링하는 HMM을 사용하는 어휘 인식에서 인식 어휘의 모델들의 대한 인식 확률이 이산적인 분포를 나타내며 인식을 위한 계산량이 적은 장점이 있지만 인식률을 계산했을 때 상대적으로 낮은 단점이 있다. 이를 개선하기 위하여 베이시안 기법 어휘 인식 모델을 융합한 잡음 제거 인식률 향상을 제안한다. 본 논문은 베이시안 기법 어휘 인식을 위한 모델 구성을 베이시안 기법의 최적화한 인식 모델을 구성하였다. HMM을 기반으로 한 사전 확률 방법과 베이시안 기법인 사후확률을 융합하여 잡음을 제거하고 인식률을 향상시켰다. 본 논문에서 제안한 방법을 적용한 결과 어휘 인식률에서 98.1%의 인식률을 나타내었다.

HMM 어휘 인식 모델 최적화를 이용한 베이시안 기법 인식률 향상 (Bayesian Method Recognition Rates Improvement using HMM Vocabulary Recognition Model Optimization)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제12권7호
    • /
    • pp.273-278
    • /
    • 2014
  • HMM(Hidden Markov Model)을 이용한 어휘 인식에서 인식 어휘의 모델들의 대한 인식 확률이 이산적인 분포를 나타내며 인식을 위한 계산량이 적은 장점이 있지만 인식률을 계산했을 때 상대적으로 낮은 단점이 있다. 이를 개선하기 위하여 HMM(Hidden Markov Model) 모델 최적화를 이용한 베이시안 기법 인식률 향상을 제안한다. 본 논문은 HMM 어휘 인식에서 인식을 위한 모델 구성을 가우시안 믹스쳐 모델로 최적화한 인식 모델을 생성하였으며 베이시안 기법인 사전확률과 사후확률을 이용한 인식률을 향상시켰다. 본 논문에서 제안한 방법을 적용한 결과 어휘인식률에서 97.9%의 인식률을 나타내었다.

시맨틱 기술과 베이시안 네트워크를 이용한 산사태 취약성 분석 (Landslide Susceptibility Analysis Using Bayesian Network and Semantic Technology)

  • 이상훈
    • 대한공간정보학회지
    • /
    • 제18권4호
    • /
    • pp.61-69
    • /
    • 2010
  • 비탈면 혹은 절성토지의 파괴로 사람과 재산에 심각한 피해를 입히기 때문에 미리 산사태 취약성 분석을 수행하여 개발 혹은 자연재해로부터 위험을 대비하는 것이 필요하다. 기존의 산사태 취약성 분석은 휴리스틱, 통계학적, 결정론적 혹은 확률론적 방법을 통해 이뤄졌다. 그러나, 적은 현장정보 등으로 분석의 신뢰도가 떨어지거나, 전문가의 경험과 지식을 기존 정량적인 해석모델에 반영하기 어려웠다. 본 연구는 산사태 취약성 분석에 대한 전문가 지식과 공간입력자료의 시맨틱을 추출하여 온톨로지 모델을 구축하고, 이를 베이시안 네트워크에 반영하여 확률적인 산사태 모델링을 제안하였다. 기존에 전문가 수작업으로 이뤄지던 베이시안 네트워크의 구조 생성을 온톨로지 모델의 지식추론으로 자동화하고, 현장정보뿐만 아니라 전문가 지식을 모델링에 반영하여 조건부 산사태 발생확률분포를 작성하였다. 이 결과를 GIS에 적용하여 산사태 취약성 지도를 작성하였다. 검증을 위해 충남 홍성일원의 오서산 지역에 적용한 결과 기존 산사태 발생흔적과 86.5% 일치하였다. 본 연구를 통해 일반 사용자도 전문가 도움 없이도 광역적인 산사태 취약성 분석이 가능하리라 기대된다.

GIS의 Weight of Evidence 기법을 이용한 토석류 및 산사태 위험지역 분석 (Analysis of Debris flow and Landslide Hazard Area using Weight of Evidence Technique in GIS)

  • 오채연;전계원;전병희;장창덕;윤지준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.705-705
    • /
    • 2012
  • 우리나라는 최근 여름철 태풍 및 집중호우로 인해 많은 토석류 및 산사태가 발생하고 있다. 작년 7월에도 집중호우로 인해 서울시 우면산 일대와 강원도 춘천에 많은 인적 물적 피해를 입었다. 해마다 반복되는 토석류나 산사태의 위험을 감소시키기 위해서는 보다 정확한 위험지역 예측모델을 필요로 한다. 본 연구는 토석류 및 산사태의 위험과 취약지역을 예측하기 위하여 GIS기반의 Weight of Evidence 기법을 적용하여 위험지역을 분석 하고자 한다. 2006년 태풍 에위니아에 의해 많은 토석류 피해를 입은 강원도 인제군 가리산일대를 대상으로 하였으며 토석류 및 산사태 위치 자료는 2005년, 2006년 토석류 발생 전후 항공사진의 중첩분석을 토대로 발생 지역을 추출하였다. 토석류 및 산사태발생에 영향을 미치는 지형, 지질, 토양, 수문, 임상 등의 인자들은 GIS를 이용하여 DB로 구축하였다. 베이시안 확률기법(Bayesian Method)에 기반 하여 구축된 DB와 결합하여 각각의 인자의 가중 값 W+, W-를 계산하여 상관관계를 분석하고 Weight of Evidence 기법을 적용하여 위험지역을 정량적으로 평가하고자 한다.

  • PDF

자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상 (Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection)

  • 이현진;박혜영;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.326-338
    • /
    • 2003
  • 신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.

알루미나의 레이저 절단 가공 시 균열 발생의 확률모델링 (A Probabilistic Model for Crack Formation in Laser Cutting of Ceramics)

  • 최인석;이성환;안선응
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.90-97
    • /
    • 2002
  • Ceramics are being increasingly used in industry due to their outstanding physical and chemical properties. But these materials are difficult to machine by traditional machining processes, because they are hard and brittle. Recently, as one of various alternative processes, laser-beam machining is widely used in the cutting of ceramics. Although the use of lasers presents a number of advantages over other methods, one of the problems associated with this process is the uncertain formation of cracks that result from the thermal stresses. This paper presents a Bayesian probabilistic modeling of crack formation over thin alumina plates during laser cutting.

비디오 셧의 감정 관련 특징에 대한 통계적 모델링 (Statistical Model for Emotional Video Shot Characterization)

  • 박현재;강행봉
    • 한국통신학회논문지
    • /
    • 제28권12C호
    • /
    • pp.1200-1208
    • /
    • 2003
  • 비디오 데이터에 존재하는 감정을 처리하는 것은 지능적인 인간과 컴퓨터와의 상호작용을 위해서 매우 중요한 일이다. 이러한 감정을 추출하기 위해서는 비디오로부터 감정에 관련된 특징들을 검출하기 위한 컴퓨팅 모델을 구축하는 것이 바람직하다. 본 논문에서는 비디오 셧에 존재하는 저급 특징들의 확률적인 분포를 이용하여 감정 이벤트 발생에 관련된 통계학적인 모델을 제안한다. 즉, 비디오 셧의 기본적인 특징을 추출하고 그 특징을 통계적으로 모델화 하여 감정을 유발하는 셧을 찾아낸다. 비디오 셧의 특징으로는 칼라, 카메라 모션 및 셧 길이의 변화를 이용한다. 이러한 특징들을 EM(Expectation Maximization) 알고리즘을 이용하여 GMM(Gaussian Mixture Model) 으로 모델링하고, 감정과 시간과의 관계를 MLE(Maximum Likelihood Estimation)를 이용하여 시간에 따른 확률분포 모델로 구성한다. 이런 두 개의 통계적인 모델들을 융합하여 베이시안 분류법을 적용하여 비디오 데이터로부터 감정에 관련된 셧을 찾아낸다.

이동형 정보 증강 시스템을 위한 실시간 장소 인식 (Real-Time Place Recognition for Augmented Mobile Information Systems)

  • 오수진;남양희
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권5호
    • /
    • pp.477-481
    • /
    • 2008
  • 이동 중 사용자에게 필요한 정보를 제공하기 위해서는 장소를 인지하는 기술이 필요하다. 본 논문에서는 건물 내에서 이동하면서 카메라에 의해 포착된 영상 정보를 분석하여 현재 장소를 파악하고 카메라 영상에 관련 정보를 증강하는 비디오 기반 실시간 장소인식 시스템을 제안한다. 영상의 전역적 특징을 이용한 기존 연구들은 장면의 부분적인 폐색이나 잡음에 민감하고, 물체인식을 행하는 지역적 특징 의존 방식은 계산량이 많아 실시간 적용이 어렵다. 또한, 그러한 특징들로부터 장소인식 결과를 도출하기 위해서는 통계적 그래프 기반 모델이나 베이시안 네트웍등이 이용되어 왔는데, 전자의 경우 장소 이동의 확률을 얻기 위한 많은 통계 데이타가 필요하며, 후자는 장소 이동문맥을 활용하지 못하므로 물체 인식 결과에만 의존하는 단점이 있다. 본 논문에서는 장소 문맥 정보를 활용하면서 영상의 지역적, 전역적 특징추출법의 결합을 통해 부분 폐색 및 잡음에 대한 전역적 방법의 민감성을 보완하고, 지역적 방법의 느린 처리속도를 보완한 시스템을 제안한다. 제안된 방법을 건물 내부를 이동하면서 장소에 대한 정보를 얻는 정보증강 시스템에 적용하여 실시간 성능을 확인하였다.

LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조 (LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition)

  • 이준호
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF

Particle Filter를 이용한 제스처 인식 연구 (A Study on the Gesture Recognition Using the Particle Filter Algorithm)

  • 이양원;김철원
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2032-2038
    • /
    • 2006
  • 연속되는 이미지 중에서 인간의 동작을 인식하는 것은 인간과 컴퓨터 의 상호 작용에서 매우 중요하고 도전할 분야이다. 본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반한 동작 인식 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이시안(Bayesian) 추정 규칙을 적용하는 추적구조를 갖고 있기 때문에 다른 어떤 종류의 추적 알고리즘보다 뛰어난 성능을 보인다. 본 논문에서는 알고리즘의 성능평가를 위해서 두 개의 동작 모델을 가정하였고, 영상에 대한 전처리를 위해서는 MATLAB를 이용하였으며 입자필터는 고속 처리를 위하여 C++로 구현하였다. 두 개의 동작 실험 결과를 통해, 동작 인식 입자 필터가 복잡한 환경 속에서 강인한 추적 성능을 나타냄을 확인하였다.