• 제목/요약/키워드: 베이시안 정보 기준

검색결과 8건 처리시간 0.024초

퍼지 분류기를 이용한 지능형 차단 시스템 개발 (Development of Intelligent Diagnosis System using Fuzzy Classifier)

  • 성화창;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1785-1786
    • /
    • 2008
  • 본 논문에서는 저압 배선 진단 시스템 구축을 위한 퍼지-베이시안 분류기 기반 지능형 차단 시스템 개발을 목표로 한다. Time-Frequency Domain Reflectometry (TFDR)방법이 바탕이 되어 도선의 이상 상태를 측정하게 되며, 진단 부분에서 받은 정보를 능동적으로 해석하고 이상 유무에 따른 차단의 역할을 수행하는 시스템 개발이 최종 목표이다. 제안하고자 하는 분류 알고리즘은 퍼지-베이시안 분류 알고리즘을 중심으로 구성되며, 분류하고자 하는 도선의 이상상태인 damage, open 그리고 short에 대한 분류 기준을 마련하고자 한다. 또한, 실제 저압 배선에서 얻어진 데이터를 바탕으로 퍼지 분류 규칙의 생성 및 분류 알고리즘 생성을 구체화하여 좀 더 나은 성능의 분류기를 개발하고자 하는 것이 본 논문의 목표이다.

  • PDF

적응적 정규화, 프루닝 및 BIC를 이용한 신경망 최적화 방법 (An Optimization Method of Neural Networks using Adaptive Regulraization, Pruning, and BIC)

  • 이현진;박혜영
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.136-147
    • /
    • 2003
  • 주어진 문제에 대하여 최적의 성능을 가지는 신경회로망을 얻기 위해서는 학습을 통한 매개변수의 최적화 (parameter optimization)와 모델 선택을 통한 구조 최적화(structure optimization )의 통합적인 과정이 필요하다. 본 논문에서는, 각 세부 방법들의 특성을 고려하여, 공통의 특성을 갖는 방법들을 결합함으로써 효율적이면서도 일반화 성능을 높이는 총체적인 신경회로망 최적화 방법을 제안한다. 먼저 다양한 오차 함수를 사용할 수 있는 자연 기울기 강하 학습에 적응적 정규화 방법을 도입함으로써 가중치 매개변수(weight parameter)들을 최적화한다. 그리고 이렇게 최적화된 매개변수(parameter)들에 자연 프루닝(natural pruning)을 적용하여 불필요한 요소들을 제저하여 최적화 된 구조를 생성한다. 반복적인 과정에 의하여 후보 모델들을 구성하고 베이시안 정보 기준(Bayesian Information Criterion: BIC )을 이 용하여 최적의 모델을 평가하여 선택하는 방법을 제안하였다. 벤치마크 데이터에 대한 실험을 통하여 제안하는 방법의 구조 최적화 능력과 일반화 성능의 우수성을 보였다.

  • PDF

적응적 정규화 자연기울기 학습과 자연프루닝을 통한 신경망의 일반화 성능 향상 (Improving Generalization in Neural Networks using Natural Gradient Learning with Adaptive Regularization and Natural Pruning)

  • 이현진;박혜영;지태창;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.265-267
    • /
    • 2002
  • 본 논문에서는 적응적 정규화 자연기울기 학습법과 자연 프루닝(pruning) 방법의 결합을 통하여 일반화 성능이 우수만 신경망을 구성하고자 한다. 먼저 적응적 정규화 자연기울기 학습을 통하여 신경망의 가중치를 최적화 시키고, 자연 프루닝에 의하여 신경망의 구조를 단순화 시킨다. 이러한 모델들 중 최적의 모델은 베이시안 정보 기준에 의해 선택함으로써 일반화 성능이 우수만 신경망을 구성하는 방법을 제안한다 벤치마크 (benchmark) 데이터로 제안하는 방법과 유클리디안(Euclidean) 거리에 기반한 결합 방법과 자연 프루닝만을 적용한 방법을 비교함으로써 우수성을 검증한다.

  • PDF

암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍 (Neural Network Pair with Negatively Correlated Genes for Cancer Classification)

  • 원홍희;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

음성 인식 시스템의 화자 적응 성능 향상을 위한 코드북 설계 (On Codebook Design to Improve Speaker Adaptation)

  • 양태영;신원호;김원구;윤대희
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.5-11
    • /
    • 1996
  • 본 논문에서는 반연속 HMM(semi-continuous Hidden Markov Model) 음성 인식 시스템에 적용되는 베이시안 화자 적응(Bayesian speaker adaptation)의 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존 베이시안 화자 적응 알고리즘의 경우 새로운 화자의 특징 분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준(reference) 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고, 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응 관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.

  • PDF

화자 적응 성능 향상을 위한 코드북 설계 (On Codebook Fesign to Improve Speaker Adaptation)

  • 양태영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.228-231
    • /
    • 1995
  • 반연속 HMM 음성인식 시스템의 화자 적응 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존의 화자 적응 알고리즘으로는 새로운 화자의 적응 데이터 특징의 분포와 HMM 모수의 사전밀도를 함께 고려하는 베이시안 화자적응 알고리즘이 있다. 그러나 새로운 화자의 특징분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드 들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.

  • PDF

자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상 (Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection)

  • 이현진;박혜영;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.326-338
    • /
    • 2003
  • 신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.

다변량 확률밀도함수와 베이지안 정리를 이용한 교전공간내 공중항적의 격추확률 분포 특성 (Characteristics of Kill Probability Distribution of Air Track Within the Engagement Space Using Multivariate Probability Density Function & Bayesian Theorem)

  • 홍동욱;예승만;김주현
    • 한국항공우주학회지
    • /
    • 제49권6호
    • /
    • pp.521-528
    • /
    • 2021
  • 위협평가가 끝난 공중항적에 대해 적절한 대응무기를 할당하기 위해서는 교전예상지점을 고려하여 교전적합성을 평가하는 것이 필요하다. 논문에서는 공중항적이 교전공간을 통과할 때 공중항적의 상대거리, 접근방위각 및 고도 등 다변량 속성정보를 가지고 베이지안 정리를 적용하여 교전공간내 위치에 따른 격추확률을 계산하는 방법을 제시하였다. 계산결과 교전공간내에서의 각 지점별 격추확률값의 분포형태는 최적의 예상요격지점을 기준으로 다변량 정규분포를 따르고 있음을 확인하였고, 계산된 격추확률값은 교전공간을 통과하는 공중항적의 교전가능성 평가에 적용가능할 것으로 기대된다.