• 제목/요약/키워드: 베어링 결함 검출

검색결과 35건 처리시간 0.021초

고차 모멘트 Cepstrum을 이용한 구름 베어링의 결함검출

  • 김영태;최만용;김기복;박해원;박정학;유준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.191-191
    • /
    • 2004
  • 베어링은 회전기계에서 가장 일반적인 구성요소로 베어링의 초기 결함 또는 퇴화현상이 사전에 발견되지 않으면 회전기계의 고장 또는 파손으로 엄청난 손실이 초래될 수 있다. 베어링의 초기 결함을 검출하기 위한 가장 보편적인 방법으로 베어링 진동신호의 특징적인 패턴을 검출하는 것이다.(중략)

  • PDF

저속 구름 베어링의 다중 결함 조기 검출 (Early Multiple Fault Identification of Low-Speed Rolling Element Bearings)

  • 강현준;정인규;강명수;김종면
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교 (Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques)

  • 김호종;김원태
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.185-192
    • /
    • 2015
  • 동적하중에서의 베어링 결함에 대한 실시간 진단기술은 상대적으로 저조하다. 따라서 볼베어링의 이상상태 현상으로 인한 온도 상승 및 진동 증가 등을 사전에 검출하는 기술이 필요하며, 회전체에 대한 운전상태 감시 및 손상 진단을 통해 발전설비의 원활한 운전을 기할 수 있는 검출 기술이 필요하다. 적외선 열화상 실험과 더불어 ANSYS를 이용한 유한요소해석으로부터 실험과 동일한 베어링을 구조 설계 및 해석하여 데이터를 분석함으로써 열화상 기술로 얻은 데이터의 신뢰성을 확보하였다.

적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구 (A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography)

  • 김호종;홍동표;김원태
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.330-335
    • /
    • 2013
  • 결함을 조기에 발견하기 위한 실시간 모니터링 시스템은 적외선 열화상 기술을 중점으로 구성된다. 본 연구의 중점은 비파괴 적외선 열화상 기법을 사용하여 볼베어링의 손상 검출 및 온도 특성 분석이다. 본 논문에서는 신뢰성 평가를 위한 적외선 실험 데이터와 기존의 주파수 데이터를 비교했다. 실험을 통해 베어링의 온도 특성에 따라 다양한 손상 상황을 분석했다. 본 논문의 실험의 결과로부터 적외선 열화상 기법은 실시간으로 동작 상태에 하중을 받는 볼베어링의 손상 탐지를 위한 매우 유용한 기법임이 확인되었다.

저속회전베어링의 전동면 이상진단에 관한 연구 -웨이브렛과 패턴인식법의 적용-

  • 김태구
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2002년도 춘계 학술논문발표회 논문집
    • /
    • pp.413-418
    • /
    • 2002
  • 베어링은 산업현장에서 널리 쓰여지는 중요 부품이다. 따라서 이의 결함에 따른 손실을 예방하기 위해서는 이상을 진단하고 검지하는 기법이 요구된다. 따라서 본 연구에서는 저속회전하므로 노이즈가 많이 포함되어 절상상태의 신호검출이 어려운 저속회전베어링의 외륜이상을 웨이브렛의 Denoising 기법을 적용하여 정량적으로 진단하고 패턴인식법 중의 하나인 KDI(Kullback Discrimination Information)를 적용하여 이상상태의 진단/검지능력을 시험해 보았다. 웨이브랫의 Denoising 기법은 노이즈 캔셀링(Noise canceling)이 능력이 뛰어났고, HDI기법은 저속회전베어링의 정상과 이상의 분류에 뛰어난 검지능력이 있음을 알 수 있었다.(중략)

  • PDF

음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출 (Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling)

  • 장원철;서준상;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다.

음향 방출 신호와 질감 분석을 이용한 유도전동기의 베어링 복합 결함 검출 (Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis)

  • 장원철;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.55-62
    • /
    • 2014
  • 본 논문에서는 유도 전동기 결함 중 가장 많은 비중을 차지하는 베어링의 복합 결함을 검출하기 위해 음향 방출 신호와 이를 영상화하여 질감 분석을 이용한 결함 검출 방법을 제안한다. 영상화된 결함 신호가 갖는 엔트로피, 픽셀의 동질성 및 에너지 특징을 분석하고, 그레이-레벨 동시발생 행렬을 통해 영상의 에너지, 동질성 및 다양성의 세 가지 질감 특징을 추출한다. 추출된 세 가지 질감 특징을 퍼지-ARTMAP(Fuzzy-ARTMAP)의 입력으로 사용하여 베어링의 외륜-내륜, 내륜-롤러 및 외륜-롤러에 대한 복합 결함을 분류한다. 총 10회에 걸쳐 제안한 방법의 분류 성능을 평가한 결과, 100%의 분류 정확성을 보였다.

탈황 흡수탑 유도전동기 베어링 결함 진단을 위한 전류 스펙트럼 해석 (Analysis of Motor-Current Spectrum for Fault Diagnosis of Induction Motor Bearing in Desulfurization Absorber)

  • 박정현;문승재
    • 플랜트 저널
    • /
    • 제11권2호
    • /
    • pp.39-44
    • /
    • 2015
  • 본 연구는 석탄화력 탈황설비인 흡수탑 교반기용 유도전동기의 베어링 결함진단을 토대로 전류 스펙트럼 해석이 예측정비 수단으로서 활용할 수 있는지를 논하고자 하였다. 베어링의 교체 전과 후의 전류스펙트럼 해석을 하고 베어링을 육안 점검하여 비교 분석함으로써 실제 발전 산업현장에서 부하운전중인 유도전동기의 베어링의 결함진단을 하였다. 분석 결과, 볼과 외륜의 베어링 결함에 해당하는 주파수성분이 예측한 값으로 검출되었고 전압기준의 진폭크기로 환산하여 베어링 교체하기 전과 후를 비교하면 결함이 진행될 경우 볼 결함에서는 약 2.9배 증가되고 외륜 결함에서는 약 2.24배 증가 되었음을 확인할 수 있었다. 이 같은 결론으로 인위적인 고장요소에 의한 베어링 결함진단 뿐만 아니라 산업현장에서 부하 운전되고 있는 유도전동기의 베어링 결함을 사전에 예측하는데 있어서도 매우 유용하였다.

  • PDF

AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출 (Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology)

  • 정의식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구 (On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography)

  • 홍동표;김호종;김원태
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.355-360
    • /
    • 2013
  • 본 연구에서는 적외선 열화상 카메라를 통하여 베어링의 온도변화를 분석하고, FEM 수치해석을 통하여 모델러에 대한 정상상태에서의 시뮬레이션을 통해 베어링의 열적분포를 해석하였다. 전산 열해석을 위한 유한요소 해석과 열화상 실험을 서로 비교분석하였고 유한요소 전산해석을 통하여 열화상 실험의 정확도를 확인하였다. 본 연구를 통하여 적외선 열화상 실험은 실시간으로 베어링의 상태를 감시할 수 있어 다른 진단방식보다 많은 장점을 가지고 있다. 또한 작업 현장에서 베어링 파손 상태 유무 확인과 파손 방지를 위해서 현장 작업조건을 적용한 유한요소 해석 결과를 비롯하여, 하중조건 회전속도조건, 볼 손상조건, 내외륜 손상조건 등에 따라, 열화상 카메라로 실시간으로 베어링을 감시하면 베어링의 파손을 진단 검출할 수 있다.