• Title/Summary/Keyword: 법선강성

Search Result 2, Processing Time 0.019 seconds

A Study on Slope Stability Analysis of Sedimentary Rock using Interfaces Module of FLAC (FLAC의 Interfaces Module을 이용한 퇴적암 사면의 안정성 해석에 관한 연구)

  • 오대열;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.345-360
    • /
    • 2002
  • This study was for analysing the sedimentary rock slope stability and providing the reinforcement method that can heighten stability. The study area consists of Cretaceous basalt or basaltic tuff belonging to Hak-Bong Basalt Formation in Ha-Yang Group. Nature of geological structure confirmed in this area ars bedding, joint and fault. Majority of geological structure that affect most relationship rock slope stability is bedding. It is shown that dip direction is 120~160/15~25. In other structure, joint sets are shown that dip direction of set 1 is 310~330/65~85 and set 2 is 230~250/70~85. Joint set 3 shows above 85$^{\circ}$ high angle on NE trend although do not show clear. Stability analysis about rock slope used kinematic analysis, limit equilibrium method and FLAC by numerical analysis method. FLAC is continuum model that use Fintie Defferentce Method, but could use Interfaces Module and get discrete model's analysis effect such as UDEC.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.