• 제목/요약/키워드: 범주

검색결과 3,933건 처리시간 0.033초

가상예제를 이용한 수치 및 범주 속성 데이터의 분류 성능 향상 (Improving Classification Accuracy for Numerical and Nominal Data using Virtual Examples)

  • 이유정;강재호;강병호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.183-188
    • /
    • 2006
  • 본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주속성 및 수치속성 데이터에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이터를 대상으로 한 반면 본 연구에서는 범주속성 데이터에 대해서도 가상예제를 적용하여 효과를 확인하였다. 그리고 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 한 기존 연구들과는 달리 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이터와 수치 속성을 포함한 데이터를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.

  • PDF

문서 분류를 위한 특징 선택 (Feature Selection for Document Classification)

  • 진훈;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.262-264
    • /
    • 2001
  • 본 논문은 덱스트 형태로 존재하는 문서가 특정 범주가 특정 범주에 속하는 지를 판별하는데 있어서 그 문서를 표현하고 있는 특징을 어떻게 선택할 것인가와 얼마나 선택할 것인가가 미치는 영향을 실험을 통하여 측정하였다. 우리는 실험을 통하여 특징 선택 방법이 분류 성능에 미치는 영향을 알아보고자 하였고, 특징의 개수와 분류 성능과의 상관관계, 그리고 범주의 개수와 특징의 개수와의 관계를 규명하고자 하였다. 결과를 통하여 우리는 뉴스 그룹 문서의 경우 그 분포상황의 특이성에 기인하여 정보획득 방법이 가장 좋은 성능을 냄을 알 수 있었고, 문서의 특징의 개수에 따라 성능에 있어서 커다란 차이가 있음도 알게 되었다. 또한 정보획득 방법과 나이브 베이지안 분류방법을 이용했을 때 가장 좋은 성능을 도출하는 특징의 개수가 범주의 개수에 비례함을 알 수 있었다.

  • PDF

직물 디자인 강성 이미지 스케일(image scale) (Affective Scale for Textile Image)

  • 박수진;장준익;정찬섭
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 추계학술발표 논문집
    • /
    • pp.218-224
    • /
    • 1998
  • 본 연구에서는 직물 디자인과 관련된 감성 어휘 모형과 디자인 요소 분석 체계를 통합하여 직물 디자인 감성 이미지 스케일을 제안하고자 한다. 이를 위해 3차원으로 구성되었던 감성 어휘 모형을 수정하여 2차원-범주 모형으로 만들고 디자인 요소 분석 체계를 이용하여 개별 직물 표본에 대한 디자인 평가가 선행되었다. 두 체계를 토대로 33개의 직물 표본에 대해 76개의 감성 어휘를 사용한 감성 조사가 실시되었다. 직물관련 감성 평가시 개별 감성 어휘를 모두 비교, 판단하는 경우 생길 수 있는 과제의 어려움을 줄이고자 범주 평가 후 범주 내 개별 어휘를 평가하는 방식을 취했다. 설문을 연령대가 다른 일반인과 전문가에게 실시되었으며 설문 결과를 토대로 직물 표본을 2차원-범주 모형에 분포시키고 필수적인 디자인 요소에 대해 확인하였다.

  • PDF

K-평균 군집분석을 활용한 다중대응분석의 재해석

  • 김경희;최용석
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.175-178
    • /
    • 2001
  • 다원분할표에서 범주들의 대응관계를 그래프적으로 보여주는 다중대응분석(multiple correspondence analysis)은 주결여성(principal inertia)이 총결여성(total inertia)에서 차지하는 비율이 전반적으로 낮아 설명력(goodness-of-fit)이 낮은 2차원의 대응분석그림을 얻게 된다. 이를 극복하기 위해 Benzecri의 공식을 사용하면 낮은 주결여성을 높이고 새로운 2차원 대응분석그림을 얻을 수 있다. 그러나 이 새로운 대응분석그림도 범주들의 대응관계를 명확히 보여주지는 못한다(Greenacre and Blasius, 1994, chapter 10). 앤드류 플롯(Andrews plot)을 이용하여 범주들의 군집화(clustering)로 다중대응분석을 재해석 하고자 하나 범주의 수가 많은 경우 해석상 어려움이 따른다. 본 소고에서 이와 같은 경우 K-평균 군집분석을 활용하여 다중대응분석의 해석을 용이하게 하고자 한다.

  • PDF

질의응답 시스템을 위한 술어정보 기반 질의분석 (Predicate-based Question Analysis for Korean Question-Answering System)

  • 김원남;신승은;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.296-300
    • /
    • 2004
  • 질의 응답 시스템이 정확한 정답을 제시하기 위해서는 사용자가 요구하는 정답의 유형을 결정할 필요가 있다. 질의분석의 일반적인 접근법으로는 의문사 정보, 규칙 그리고 통계 정보에 기반한 방법들이 있다. 본 논문에서는 술어정보를 이용한 질의분석을 제안한다. 먼저 의문사 정보를 이용하여 상위정답유형을 결정하고 질의문의 술어 정보와 구문 구조 정보를 이용하여 초점단어(focus word)를 추출한다. 초점단어란 정답유형을 결정하는데 단서가 되는 단어로써, 추출된 초점단어에 의해 75개의 하위정답유형 중 하나가 결정된다. 실험에 앞서 정답 유형별로 6개의 상위범주와 75개의 하위범주를 정의하였으며, 실험에는 학습 데이터의 일부와 일반 Web에서 수집한 테스트 데이터가 사용되었다. 실험결과 상위범주는 97.6%, 하위범주는 77.8%의 정확도를 보였으며 초점단어는 92.5%의 정확도를 보였다.

  • PDF

고차원 범주형 데이터를 위한 투영 군집화 기법의 핵심 요소 개발 (Development of Core Components of Projected Clustering for High-Dimensional Categorical Data)

  • 김민호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.181-183
    • /
    • 2006
  • 본 논문은 고차원의 범주형 데이터에 대한 군집화에 대해서 다룬다. 기존의 범주형 데이터 객체를 위한 유사성(상이성) 계측들의 기저에 깔려 있는 한계점은 수치형 데이터에서와 같은 순서화 (ordering)의 부재와 데이터의 고차원성과 희소성에 기인하는데, 이를 효과적으로 극복할 수 있는 기법이 투영 군집화이다. 본 논문에서는 고차원의 범주형 데이터를 효과적으로 처리할 수 있는 투영 군집화를 다루며 핵심 요소인 군집 차원의 정의와 군집 응집도를 제안한다.

  • PDF

범주형 데이터 집합에 대한 엔트로피 기반 군집 유효화 기술 (Entropy-based Clustering Validation Technique for Categorical Data Sets)

  • 박남현;안창욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.477-480
    • /
    • 2004
  • 본 논문에서는 고차원의 특성을 가진 범주형 데이터 집합의 군집 유효화 기술에 대하여 알아본다. 먼저, 범주형 데이터 집합에 대하여 한 군집의 센트로이드를 정의함에 따라 일반적인 군집화 방법에서 사용되는 쌍 유사성 측정을 가능하게 한다. 다음으로, 범주형 데이터 집합에 대한 증분 군집 알고리즘을 통하여 도출된 결과에 대해 최적 군집 수의 결정하기 위하여 엔트로피 기반 군집 유효화 지수를 사용한다. 이를 통하여 일반적인 군집 알고리즘에서 최적 결과를 얻기 위해 필요한 문턱값 결정 문제를 손쉽게 해결한다. 마지막으로, 위의 개념들을 여러 데이터 집합에 대해 실험한다.

  • PDF

효율적인 바이그램을 이용한 자동문서 범주화 (Automated Text Categorization using high quality Bigrams)

  • 최준영;이찬도
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.261-264
    • /
    • 2003
  • 본 연구는 바이그램을 이용하여 자동문서범주화 성능을 향상시키는 알고리즘의 개발을 목표로 한다. 기존의 문서 범주화 알고리즘의 장단점을 비교하여 개선된 바이그램 추출 알고리즘을 구현하고, 이 알고리즘을 실험한 결과 Reuters-21579 data set은 개별 단어를 사용하여 시험한 결과보다 단어+바이그램을 사용하였을 경우 BEP은 2.07%, F1은 1.40% 향상률을 보였고, Korea-web data set은 BEP의 8.12%, F1의 6.25% 향상을 보였다. 이와 같은 실험결과는 단어를 사용한 경우보다 단어+바이그램을 사용한 자동문서 범주화 시스템이 더 효율적이라는 것을 보여준다.

  • PDF

Anchor Text의 단어 정보를 이용한 자동 문서 범주화 (Automatic Text Categorization Using Term Information of Anchor Text)

  • 허희근;한기덕;정성원;임성신;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.665-668
    • /
    • 2004
  • 최근의 웹 문서는 텍스트뿐만 아니라 이미지, 사운드 등 다른 여러 형태로 표현되고 있어서 텍스트의 비중이 낮아지고 있다. 그래서 문서 내에서 일정량 이상의 단어 추출이 어려운 문서들에 대해서 기존의 단어 정보만을 이용한 문서 범주화 방법은 좋은 성능을 기대할 수 없다. 그래서 본 논문은 Anchor Text 단어 정보의 자질 적합성 판단에 의한 새로운 자동 문서 범주화 모델을 제안한다. 문서 범주화 모델로는 베이지언 확률 모델을 이용하였으며, 카이제곱 통계량을 사용하여 자질을 선정하였다. 문서 내에서 추출된 단어 자질들이 해당 문서를 판단하는데 부족하다고 판단되면 문서의 링크정보를 이용하여 연결된 문서의 단어 자질과 Anchor Text의 단어 자질을 반영함으로써 성능을 향상시킨다.

  • PDF