Grouping episodes into semantically related categories is necessary for better mnemonic structure. However, the effect of grouping on memory of subordinate details was not clearly understood. In an fMRI study, we tested whether attending superordinate during semantic association disrupts or enhances subordinate episodic details. In each cycle of the experiment, five cue words were presented sequentially with two related detail words placed underneath for each cue. Participants were asked whether they could imagine a category that includes the previously shown cue words in each cycle, and their confidence on retrieval was rated. Participants were asked to perform cued recall tests on presented detail words after the session. Behavioral data showed that reaction times for categorization tasks decreased and confidence levels increased in the third trial of each cycle, thus this trial was considered to be an important insight where a semantic category was believed to be successfully established. Critically, the accuracy of recalling detail words presented immediately prior to third trials was lower than those of followed trials, indicating that subordinate details were disrupted during categorization. General linear model analysis of the trial immediately prior to the completion of categorization, specifically the second trial, revealed significant activation in the temporal gyrus and inferior frontal gyrus, areas of semantic memory networks. Representative Similarity Analysis revealed that the activation patterns of the third trials were more consistent than those of the second trials in the temporal gyrus, inferior frontal gyrus, and hippocampus. Our research demonstrates that semantic grouping can cause memories of subordinate details to fade, suggesting that semantic retrieval during categorization affects the quality of related episodic memory.
In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1429-1433
/
2010
수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.
Kim, Min;Jeon, Joo-Hyuk;Woo, Kyung-Gu;Kim, Myoung-Ho
Journal of KIISE:Databases
/
v.37
no.2
/
pp.71-81
/
2010
The problem of finding clusters is widely used in numerous applications, such as pattern recognition, image analysis, market analysis. The important factors that decide cluster quality are the similarity measure and the number of attributes. Similarity measures should be defined with respect to the data types. Existing similarity measures are well applicable to numerical attribute values. However, those measures do not work well when the data is described by categorical attributes, that is, when no inherent similarity measure between values. In high dimensional spaces, conventional clustering algorithms tend to break down because of sparsity of data points. To overcome this difficulty, a subspace clustering approach has been proposed. It is based on the observation that different clusters may exist in different subspaces. In this paper, we propose a new similarity measure for clustering of high dimensional categorical data. The measure is defined based on the fact that a good clustering is one where each cluster should have certain information that can distinguish it with other clusters. We also try to capture on the attribute dependencies. This study is meaningful because there has been no method to use both of them. Experimental results on real datasets show clusters obtained by our proposed similarity measure are good enough with respect to clustering accuracy.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.2
/
pp.524-531
/
2017
Summary The purpose of this study was to understand the tendency and the meaning of day care center teachers regarding role playing through metaphorical analysis. The data were collected from 166 day care center teachers who participated in A-city university supplement education using the sentence completion metaphorical method. The collected data were categorized and analyzed through a qualitative research method conducted by 2 early childhood education specialists. The results are as follows. First, the tendency of role playing metaphorical expression was divided into 3 categories, 8 contents and the frequency of 'sociality development' was the highest followed by 'emotional development', 'development'. Second, the meaning of role playing metaphorical expression was recognized as 'social skills', 'role experience', 'imitation', and 'understanding of society' in the 'sociality development' category; as 'imagination', 'purification function', and 'means of expression' in the 'emotional development' category; and as 'essential factor of development' in the 'development' category. Based on the research result, it was suggested that the roles of education and teachers for the value and effective operation of role playing in early childhood education institutes should be reconsidered.
The purpose of this study is to investigate high school students' geographic misconceptions and their mechanisms of formation. Three main theories explaining why students develop misconceptions exist: 1) framework theory, 2) p-prim(phenomenological primitive) theory, and 3) categorization theory. This study chose three target geographic concepts, or, 1st and 2nd mountain ranges, secondary central business district and satellite city, and the Nopsae wind and the F$\ddot{o}$hn phenomenon. Then, this research explored students' typical misconceptions regarding these concepts and attempted to examine which theory explains the misconception forming processes most well. As a result, the following misconceptions were found. First, students understood that the numbers 1 and 2 denote the order of the formation of mountain ranges. Second, despite differences in their main functions, students tended to subsume the secondary central business district and satellite city under one functional category. Third, students believed that the Nopsae wind and the F$\ddot{o}$hn phenomenon are identical in hierarchy. This study explained students' creation of these misconceptions by applying the categorization theory in which students located a concept in an inappropriate location of an ontology tree.
The automatic document classification is a method that assigns unlabeled documents to the existing classes. The automatic document classification can be applied to a classification of news group articles, a classification of web documents, showing more precise results of Information Retrieval using a learning of users. In this paper, we use the weighted Bayesian classifier that weights with keywords of a document to improve the classification accuracy. If the system cant classify a document properly because of the lack of the number of words as the feature of a document, it uses relevance word cluster to supplement the feature of a document. The clusters are made by the automatic word clustering from the corpus. As the result, the proposed system outperformed existing classification system in the classification accuracy on Korean documents.
Chi-square test based on large sample theory is inappropriate for testing the row homogeneity in two-way contingency table with several sparse cells. For that case, exact testing methods has been developed in the literature and implemented in StatXact(1991). However, considerable computing time is inevitable for moderate size tables. So, Monte Carlo approximation is recommended frequently. In this study, we propose a simple algorithm for generating two-way random tables with fixed row and column margins for small sample chi-square test. Also, we develop “Turkey-type” method for multiple between-row comparisons.
The Journal of Korean Association of Computer Education
/
v.11
no.3
/
pp.67-80
/
2008
Various document categorization methods have been studied to provide a user with an effective way of browsing a large scale of documents. They do compares set of documents into groups of semantically similar documents automatically. However, the automatic categorization method suffers from low accuracy. This thesis proposes a semi-automatic document categorization method based on the domains of documents. Each documents is belongs to its initial domain. All the documents in each domain are recursively clustered in a level-wise manner, so that the category tree of the documents can be founded. To find the clusters of documents, the stop-word of each document is removed on the document frequency of a word in the domain. For each cluster, its cluster keywords are extracted based on the common keywords among the documents, and are used as the category of the domain. Recursively, each cluster is regarded as a specified domain and the same procedure is repeated until it is terminated by a user. In each level of clustering, a user can adjust any incorrectly clustered documents to improve the accuracy of the document categorization.
The purpose of this study was to investigate item goodness-of-fit of Scale, Rasch rating scale model was applied to 5 dimensions 24 items of the Test of Performance Strategies (TOPS) in a sample of athletes with physical disabilities (n=215). An assumption to test Rasch Model, which is satisfaction of unidimensionality, is regarded through PCAR test, and WINSTEPS 3.65 program is used to test the goodness-of-fit of items. The results of this study were: First, 3-point rating category was appropriate for the TOPS instead of the existing 5-point rating category. Second, as a result of analyzing the goodness-of-fit of the items, 21 items of the TOPS were suitable, but 3 items were not. Third, the item reliability of person separation of the TOPS was acceptable, but the person reliability of item separation was not suitable and it was necessary to adjust the item order considering the difficulty level of the items. Fourth, as a result of comparing the individual attribute score and the difficulty level through the Item-Person Map, the distribution of the item difficulty distribution was shown to be biased in some factors compared to the personal attribute score distribution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.