• Title/Summary/Keyword: 범주의 순서화

Search Result 30, Processing Time 0.024 seconds

The effect of semantic categorization of episodic memory on encoding of subordinate details: An fMRI study (일화 기억의 의미적 범주화가 세부 기억의 부호화에 미치는 영향에 대한 자기공명영상 분석 연구)

  • Yi, Darren Sehjung;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.193-221
    • /
    • 2017
  • Grouping episodes into semantically related categories is necessary for better mnemonic structure. However, the effect of grouping on memory of subordinate details was not clearly understood. In an fMRI study, we tested whether attending superordinate during semantic association disrupts or enhances subordinate episodic details. In each cycle of the experiment, five cue words were presented sequentially with two related detail words placed underneath for each cue. Participants were asked whether they could imagine a category that includes the previously shown cue words in each cycle, and their confidence on retrieval was rated. Participants were asked to perform cued recall tests on presented detail words after the session. Behavioral data showed that reaction times for categorization tasks decreased and confidence levels increased in the third trial of each cycle, thus this trial was considered to be an important insight where a semantic category was believed to be successfully established. Critically, the accuracy of recalling detail words presented immediately prior to third trials was lower than those of followed trials, indicating that subordinate details were disrupted during categorization. General linear model analysis of the trial immediately prior to the completion of categorization, specifically the second trial, revealed significant activation in the temporal gyrus and inferior frontal gyrus, areas of semantic memory networks. Representative Similarity Analysis revealed that the activation patterns of the third trials were more consistent than those of the second trials in the temporal gyrus, inferior frontal gyrus, and hippocampus. Our research demonstrates that semantic grouping can cause memories of subordinate details to fade, suggesting that semantic retrieval during categorization affects the quality of related episodic memory.

A Fast Bayesian Detection of Change Points Long-Memory Processes (장기억 과정에서 빠른 베이지안 변화점검출)

  • Kim, Joo-Won;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.735-744
    • /
    • 2009
  • In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.

Regionalization of Extreme Rainfall with Spatio-Temporal Pattern (극치강수량의 시공간적 특성을 이용한 지역빈도분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

A New Similarity Measure for Categorical Attribute-Based Clustering (범주형 속성 기반 군집화를 위한 새로운 유사 측도)

  • Kim, Min;Jeon, Joo-Hyuk;Woo, Kyung-Gu;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.71-81
    • /
    • 2010
  • The problem of finding clusters is widely used in numerous applications, such as pattern recognition, image analysis, market analysis. The important factors that decide cluster quality are the similarity measure and the number of attributes. Similarity measures should be defined with respect to the data types. Existing similarity measures are well applicable to numerical attribute values. However, those measures do not work well when the data is described by categorical attributes, that is, when no inherent similarity measure between values. In high dimensional spaces, conventional clustering algorithms tend to break down because of sparsity of data points. To overcome this difficulty, a subspace clustering approach has been proposed. It is based on the observation that different clusters may exist in different subspaces. In this paper, we propose a new similarity measure for clustering of high dimensional categorical data. The measure is defined based on the fact that a good clustering is one where each cluster should have certain information that can distinguish it with other clusters. We also try to capture on the attribute dependencies. This study is meaningful because there has been no method to use both of them. Experimental results on real datasets show clusters obtained by our proposed similarity measure are good enough with respect to clustering accuracy.

Metaphorical Analysis on Role Playing of Day Care Center Teachers (역할놀이에 대한 어린이집 교사의 은유분석)

  • Lim, Jin-Hyung;Lee, Jin-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.524-531
    • /
    • 2017
  • Summary The purpose of this study was to understand the tendency and the meaning of day care center teachers regarding role playing through metaphorical analysis. The data were collected from 166 day care center teachers who participated in A-city university supplement education using the sentence completion metaphorical method. The collected data were categorized and analyzed through a qualitative research method conducted by 2 early childhood education specialists. The results are as follows. First, the tendency of role playing metaphorical expression was divided into 3 categories, 8 contents and the frequency of 'sociality development' was the highest followed by 'emotional development', 'development'. Second, the meaning of role playing metaphorical expression was recognized as 'social skills', 'role experience', 'imitation', and 'understanding of society' in the 'sociality development' category; as 'imagination', 'purification function', and 'means of expression' in the 'emotional development' category; and as 'essential factor of development' in the 'development' category. Based on the research result, it was suggested that the roles of education and teachers for the value and effective operation of role playing in early childhood education institutes should be reconsidered.

Mechanisms of the Formation of Geographic Misconceptions: A Case Study of High School Students' Misconceptions in the Subject of Korean Geography (지리 오개념 형성 메커니즘: 고등학생들의 한국지리 오개념을 사례로)

  • Kim, Minsung
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.4
    • /
    • pp.601-614
    • /
    • 2014
  • The purpose of this study is to investigate high school students' geographic misconceptions and their mechanisms of formation. Three main theories explaining why students develop misconceptions exist: 1) framework theory, 2) p-prim(phenomenological primitive) theory, and 3) categorization theory. This study chose three target geographic concepts, or, 1st and 2nd mountain ranges, secondary central business district and satellite city, and the Nopsae wind and the F$\ddot{o}$hn phenomenon. Then, this research explored students' typical misconceptions regarding these concepts and attempted to examine which theory explains the misconception forming processes most well. As a result, the following misconceptions were found. First, students understood that the numbers 1 and 2 denote the order of the formation of mountain ranges. Second, despite differences in their main functions, students tended to subsume the secondary central business district and satellite city under one functional category. Third, students believed that the Nopsae wind and the F$\ddot{o}$hn phenomenon are identical in hierarchy. This study explained students' creation of these misconceptions by applying the categorization theory in which students located a concept in an inappropriate location of an ontology tree.

  • PDF

An Automatic Classification System of Korean Documents Using Weight for Keywords of Document and Word Cluster (문서의 주제어별 가중치 부여와 단어 군집을 이용한 한국어 문서 자동 분류 시스템)

  • Hur, Jun-Hui;Choi, Jun-Hyeog;Lee, Jung-Hyun;Kim, Joong-Bae;Rim, Kee-Wook
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.447-454
    • /
    • 2001
  • The automatic document classification is a method that assigns unlabeled documents to the existing classes. The automatic document classification can be applied to a classification of news group articles, a classification of web documents, showing more precise results of Information Retrieval using a learning of users. In this paper, we use the weighted Bayesian classifier that weights with keywords of a document to improve the classification accuracy. If the system cant classify a document properly because of the lack of the number of words as the feature of a document, it uses relevance word cluster to supplement the feature of a document. The clusters are made by the automatic word clustering from the corpus. As the result, the proposed system outperformed existing classification system in the classification accuracy on Korean documents.

  • PDF

Small sample tests for two-way contingency tables (2원 분할표의 소표본 검증법)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.339-352
    • /
    • 1997
  • Chi-square test based on large sample theory is inappropriate for testing the row homogeneity in two-way contingency table with several sparse cells. For that case, exact testing methods has been developed in the literature and implemented in StatXact(1991). However, considerable computing time is inevitable for moderate size tables. So, Monte Carlo approximation is recommended frequently. In this study, we propose a simple algorithm for generating two-way random tables with fixed row and column margins for small sample chi-square test. Also, we develop “Turkey-type” method for multiple between-row comparisons.

  • PDF

Document Clustering based on Level-wise Stop-word Removing for an Efficient Document Searching (효율적인 문서검색을 위한 레벨별 불용어 제거에 기반한 문서 클러스터링)

  • Joo, Kil Hong;Lee, Won Suk
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.3
    • /
    • pp.67-80
    • /
    • 2008
  • Various document categorization methods have been studied to provide a user with an effective way of browsing a large scale of documents. They do compares set of documents into groups of semantically similar documents automatically. However, the automatic categorization method suffers from low accuracy. This thesis proposes a semi-automatic document categorization method based on the domains of documents. Each documents is belongs to its initial domain. All the documents in each domain are recursively clustered in a level-wise manner, so that the category tree of the documents can be founded. To find the clusters of documents, the stop-word of each document is removed on the document frequency of a word in the domain. For each cluster, its cluster keywords are extracted based on the common keywords among the documents, and are used as the category of the domain. Recursively, each cluster is regarded as a specified domain and the same procedure is repeated until it is terminated by a user. In each level of clustering, a user can adjust any incorrectly clustered documents to improve the accuracy of the document categorization.

  • PDF

A Psychometric Item Goodness-of-Fit of the Test of Performance Strategies for Athletes with Physical Disabilities Applying Rasch Model (Rasch 모형을 적용한 지체장애 엘리트선수의 스포츠수행전략(TOPS) 척도 타당화)

  • Seo, Eunchul;Baek, Jae keun
    • 재활복지
    • /
    • v.21 no.2
    • /
    • pp.169-190
    • /
    • 2017
  • The purpose of this study was to investigate item goodness-of-fit of Scale, Rasch rating scale model was applied to 5 dimensions 24 items of the Test of Performance Strategies (TOPS) in a sample of athletes with physical disabilities (n=215). An assumption to test Rasch Model, which is satisfaction of unidimensionality, is regarded through PCAR test, and WINSTEPS 3.65 program is used to test the goodness-of-fit of items. The results of this study were: First, 3-point rating category was appropriate for the TOPS instead of the existing 5-point rating category. Second, as a result of analyzing the goodness-of-fit of the items, 21 items of the TOPS were suitable, but 3 items were not. Third, the item reliability of person separation of the TOPS was acceptable, but the person reliability of item separation was not suitable and it was necessary to adjust the item order considering the difficulty level of the items. Fourth, as a result of comparing the individual attribute score and the difficulty level through the Item-Person Map, the distribution of the item difficulty distribution was shown to be biased in some factors compared to the personal attribute score distribution.