In recent high performance computing system, GPGPU has been widely used to process general-purpose applications as well as graphics applications, since GPU can provide optimized computational resources for massive parallel processing. Unfortunately, GPGPU doesn't exploit computational resources on GPU in executing general-purpose applications fully, because the applications cannot be optimized to GPU architecture. Therefore, we provide GPU research guideline to improve the performance of computing systems using GPGPU. To accomplish this, we analyze the negative factors on GPU performance. In this paper, in order to clearly classify the cause of the negative factors on GPU performance, GPU core status are defined into 5 status: fully active status, partial active status, idle status, memory stall status and GPU core stall status. All status except fully active status cause performance degradation. We evaluate the ratio of each GPU core status depending on the characteristics of benchmarks to find specific reasons which degrade the performance of GPU. According to our simulation results, partial active status, idle status, memory stall status and GPU core stall status are induced by computational resource underutilization problem, low parallelism, high memory requests, and structural hazard, respectively.
Due to increased computing power and flexibility of GPU, recent GPUs execute general purpose parallel applications as well as graphics applications. Programmers can use GPGPU by using the APIs from GPU vendors. Unfortunately, computational resources of GPU are not fully utilized when executing general purpose applications because of frequent branch instructions. To handle the branch problem, several warp formations have been proposed. Intuitively, we expect that the warp formations providing higher computational resource utilization show higher performance. Contrary to our expectations, according to simulation results, the performance of the warp formation providing better utilization is lower than that of the warp formation providing worse utilization. This is because warp formation providing high utilization causes serious memory bottleneck due to increased memory request. Therefore, warp formation providing high computation utilization cannot guarantee high performance without proper hardware resources. For this reason, we will analyze the correlation between hardware configuration and warp formation. Our simulation results present the guideline to solve the underutilization problem due to branch instructions when designing recent GPU.
Even though the performance of microprocessor is improved continuously, the performance improvement of computing system becomes hard to increase, in order to some drawbacks including increased power consumption. To solve the problem, general-purpose computing on graphics processing units(GPGPUs), which execute general-purpose applications by using specialized parallel-processing device representing graphics processing units(GPUs), have been focused. However, the characteristics of applications related with graphics is substantially different from the characteristics of general-purpose applications. Therefore, GPUs cannot exploit the outstanding computational resources sufficiently due to various constraints, when they execute general-purpose applications. When designing GPUs for GPGPU, memory system is important to effectively exploit the GPUs since typically general-purpose applications requires more memory accesses than graphics applications. Especially, external memory access requiring long latency impose a big overhead on the performance of GPUs. Therefore, the GPU performance must be improved if hierarchical memory architecture which can reduce the number of external memory access is applied. For this reason, we will investigate the analysis of GPU performance according to hierarchical cache architectures in executing various benchmarks.
GPUs are stream processors based on multi-cores, which can process large data with a high speed and a large memory bandwidth. Furthermore, GPUs are less expensive than multi-core CPUs. Recently, usage of GPUs in general purpose computing has been wide spread. The CUDA architecture from Nvidia is one of efforts to help developers use GPUs in their application domains. In this paper, we propose techniques to parallelize a skyline algorithm which uses a simple nested loop structure. In order to employ the CUDA programming model, we apply our optimization techniques to make our skyline algorithm fit into the performance restrictions of the CUDA architecture. According to our experimental results, we improve the original skyline algorithm by 80% with our optimization techniques.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.409-410
/
2012
범용 계산에 GPU를 활용하는 GPGPU 연구가 활발히 이루어지고 있다. 기존 연구에서 사용된 병렬화 기법은 데이터 이동시 GPU의 유휴자원을 잘 활용하지 못한다. 우리는 스트림 기법을 이용하여 CPU-GPU간 데이터 이동과 GPU내 연산을 동시에 실행시켜 데이터 이동시 GPU의 유휴자원을 최대한 활용하여 성능을 향상한다. 제안된 방식은 기존의 병렬화 방법에 비해 약 1.1배 향상된 성능을 나타낸다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.196-199
/
2009
높아지는 Graphic Processing Unit (GPU)의 연산 성능과 GPU에서의 범용 프로그래밍을 위한 개발 환경의 개발, 보급으로 인해 GPU를 일반연산에 활용하는 연구가 활발히 진행되고 있다. 이와같이 일반 연산에 활용되고 있는 GPU로 nVidia Tesla와 AMD/ATI의 FireStream 들이 있다. 특수목적 연산 장치인 GPU를 일반 연산을 위해 프로그래밍하기 위해서는 그에 맞는 프로그램 개발 환경이 필요한데 nVidia에서 개발한 CUDA (Compute Unified Device Architecture) 환경은 자사의 GPU 프로그램 개발을 위해 제공되는 개발 환경이다. CUDA 개발 환경은 nVidia GPU 프로그래밍 뿐만 아니라 차세대 이종 병렬 프로그램 개발 환경의 공개 표준으로 논의되고 있는 OpenCL (Open Computing Language) 와 유사한 특징을 보일 것으로 예상되기 때문에 그 중요성은 특정 GPU 에만 국한되지 않는다. 본 논문에서는 경로 적분 몬테 카를로 (Path Integral Monte Carlo) 방법을 CUDA 개발 환경을 사용하여 nVidia GPU 상에서 병렬화한 결과를 제시하였다.
The role of GPU has evolved from graphics-specific processing to general-purpose processing with the development of unified shader core architecture. Especially, execution methods for general-purpose parallel applications using GPU have been researched intensively, since the parallel hardware architecture can be utilized efficiently when the parallel applications are executed. However, current GPU architecture has limitations in executing general-purpose parallel applications, since the GPU is not specialized for general-purpose computing yet. To improve the GPU performance when general-purpose parallel applications are executed, the GPU architecture should be evolved. In this work, we analyze the GPU performance according to the architecture varying the number of cores and clock frequency. Our simulation results show that the GPU performance improves by up to 125.8% and 16.2% as the number of cores increases and the clock frequency increases, respectively. However, note that the improvement of the GPU performance is saturated even though the number of cores increases and the clock frequency increases continuously, since the data cannot be provided to the GPU due to the limit of memory bandwidth. Consequently, to accomplish high performance effectiveness on GPU, computational resources must be more suitably considered.
Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
한국HCI학회:학술대회논문집
/
2009.02a
/
pp.436-442
/
2009
Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.236-239
/
2014
3차원 영상을 제작하기 위해서는 여러 시점의 색상 영상과 함께 깊이 정보를 필요로 한다. 하지만 깊이 정보를 얻을 때 사용하는 ToF 카메라는 해상도가 낮으며 적외선 신호의 주파수 문제 때문에 최대 3대까지 사용할 수 있다. 따라서 깊이 정보를 색상 영상과 함께 사용하기 위해서 깊이 정보의 업샘플링이 필수적이다. 업샘플링은 깊이 정보를 색상 카메라 위치로 3차원 워핑하고 결합형 양방향 필터(joint bilateral filter, JBF)를 사용하여 빈 영역을 채우는 방법으로 진행된다. 업샘플링은 오랜 시간이 소요되지만 그래픽스 프로세싱 유닛(graphics processing units, GPU)를 이용하여 빠르게 수행될 수 있다. 본 논문에서는 다중 GPU의 병렬 수행을 통하여 빠르게 다시점 깊이맵을 생성할 수 있는 방법을 제안한다. 다중 GPU 병렬 수행은 범용 목적 GPU(general purpose computing on GPU, GPGPU) 중의 하나인 CUDA를 이용하였으며, 본 논문에서 제안된 방법을 이용하여 3개의 GPU 사용한 실험 결과 초당 35 프레임의 다시점 깊이맵을 생성했다.
Journal of the Korea Society of Computer and Information
/
v.25
no.2
/
pp.11-19
/
2020
Modern GPU can execute general purpose computation on the graphic processing unit, and provide high performance by exploiting many core on GPU. To run AES algorithm efficiently, parallel computational resources are required. However, computational resource of CPU architecture are not enough to cryptographic algorithm such as AES whereas GPU architecture has mass parallel computation resources. Therefore, this paper reduce the time to execute AES by employing parallel computational resource on GPGPU. Unfortunately, AES cannot utilize computational resource on GPGPU since it isn't suitable to GPGPU architecture. In this paper, IPC based dynamic SM management technique are proposed to efficiently execute AES on GPGPU. IPC based dynamic SM management can increase and decrease the number of active SMs by using IPC in run-time. According to simulation results, proposed technique improve the performance by increasing resource utilization compared to baseline GPGPU architecture. The results show that AES improve the performance by 41.2% on average.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.