• 제목/요약/키워드: 범용 그래픽 처리 장치

검색결과 19건 처리시간 0.021초

GPU를 이용한 범용 계산의 소개 (Introduction to general purpose GPU computing)

  • 유동현;임요한
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권5호
    • /
    • pp.1043-1061
    • /
    • 2013
  • 최근 과학 기술의 빠른 발전에 따라 대용량 자료가 출현하였고 이에 대한 분석의 중요도도 높아졌다. 대용량 자료의 분석에 가장 중요한 부분중 하나가 고성능 컴퓨팅 기법이고 본 논문에서는 최근 통계학계의 많은 관심을 받고 있는 GPU (graphics processing unit)기반 병렬 계산에 대한 기초적인 소개를 한다.

IPC-based Dynamic SM management on GPGPU for Executing AES Algorithm

  • Son, Dong Oh;Choi, Hong Jun;Kim, Cheol Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.11-19
    • /
    • 2020
  • 최신 GPU는 GPGPU를 활용하여 범용 연산이 가능하다. 뿐만 아니라, GPU는 내장된 다수의 코어를 활용하여 강력한 연산 처리량을 제공한다. AES 알고리즘은 다수의 병렬 연산을 요구하지만 CPU 구조에서는 효율적인 병렬처리가 이뤄지지 않는다. 따라서, 본 논문에서는 강력한 병력 연산 자원을 활용하는 GPGPU 구조에서 AES 알고리즘을 수행함으로써 AES 알고리즘 처리시간을 줄여보았다. 하지만, GPGPU 구조는 AES 알고리즘 같은 암호알고리즘에 최적화되어 있지 않다. 그러므로 AES 알고리즘에 최적화될 수 있도록 재구성 가능한 GPGPU 구조를 제안하고자 한다. 제안된 기법은 SM의 개수를 동적으로 할당하는 IPC 기반 SM 동적 관리 기법이다. IPC 기반 SM 동적 관리 기법은 GPGPU 구조에서 동작하는 AES의 IPC를 실시간으로 반영하여 최적의 SM의 개수를 동적으로 할당한다. 실험 결과에 따르면 제안된 동적 SM 관리 기법은 기존의 GPGPU 구조와 비교하여 하드웨어 자원을 효과적으로 활용하여 성능을 크게 향상시켰다. 일반적인 GPGP 구조와 비교하여, 제안된 기법의 AES의 암호화/복호화는 평균 41.2%의 성능 향상을 보여준다.

이종 멀티코어 프로세서에서 분할된 공유 LLC가 성능에 미치는 영향 분석 (Analysis on the Performance Impact of Partitioned LLC for Heterogeneous Multicore Processors)

  • 문민구;김철홍
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권2호
    • /
    • pp.39-49
    • /
    • 2019
  • 컴퓨팅 성능을 향상시키기 위해 다양한 구조적 설계 기법들이 제안되고 있는데 그중에서도 CPU-GPU 융합형 이종 멀티코어 프로세서가 많은 관심을 받고 있다. CPU-GPU 융합형 이종 멀티코어 프로세서는 단일 칩에 CPU와 GPU를 집적하기 때문에 일반적으로 CPU와 GPU가 Last Level Cache(LLC)를 공유하게 된다. LLC 공유는 CPU와 GPU 코어 사이에 심각한 캐쉬 경합이 발생하는 경우 각각의 코어 활용도가 저하되는 문제를 가지고 있다. 본 논문에서는 CPU와 GPU 사이의 캐쉬 경합 문제를 해결하기 위해 단일 LLC를 CPU와 GPU 각각의 공간으로 분할하고, 분할된 공간의 크기 변화가 전체 시스템 성능에 미치는 영향을 분석하고자 한다. 모의실험 결과에 따르면, CPU는 사용하는 LLC 크기가 커질수록 성능이 최대 21%까지 향상되지만 GPU는 사용하는 LLC 크기가 커져도 큰 성능변화를 보이지 않는다. 즉, GPU는 LLC 크기가 감소하더라도 CPU에 비하여 성능이 적게 하락함을 알 수 있다. GPU에서의 LLC 크기 감소에 의한 성능하락이 CPU에서의 LLC 크기 증가에 따른 성능향상보다 훨씬 작기 때문에 실험결과를 기반으로 각각의 코어에 LLC를 분할하여 할당한다면 전체적인 이종 멀티코어 프로세서의 성능을 향상시킬 수 있을 것으로 기대된다. 또한, 이러한 분석을 통해 향후 각 코어의 성능을 최대한 높일 수 있는 메모리 관리기법을 개발한다면 이종 멀티코어 프로세서의 성능을 크게 향상시킬 수 있을 것이다.

병렬 응용프로그램 실행 시 GPU 구조에 따른 성능 분석 (Performance Evaluation of the GPU Architecture Executing Parallel Applications)

  • 최홍준;김철홍
    • 한국콘텐츠학회논문지
    • /
    • 제12권5호
    • /
    • pp.10-21
    • /
    • 2012
  • 통합형셰이더 코어 구조 개발 이후 GPU는 그래픽스 전용 연산장치에서 범용 연산장치로 발달하고 있다. 특히, 병렬 응용 프로그램들은 병렬화된 하드웨어 구조를 효과적으로 활용할 수 있기 때문에, GPU를 활용하여 병렬 응용프로그램들을 실행시키는 기법이 주목을 받고 있다. 하지만, 현재의 GPU 구조는 비그래픽스 응용프로그램을 실행하는데 있어서 병렬성을 충분히 확보하지 못하다는 한계를 가지고 있기 때문에, 이를 해결하기 위해 GPU 구조는 빠르게 변화하고 있다. 본 논문에서는 GPU 구조의 개발 방향을 살펴보기 위해, 비그래픽스 병렬 응용프로그램들을 수행하는 경우에 코어 개수 및 동작 주파수 등의 하드웨어구조에 따른 GPU의 성능을 상세히 분석하고자 한다. 실험 결과, 코어 개수가 30에서 192로 늘어나고 동작주파수가 325MHz에서 450MHz로 증가함에 따라 GPU 성능은 28.9%에서 125.8%, 4.4%에서 16.2% 각각 향상되는 반면 성능 향상 효율성은 감소하는 것을 볼 수 있다. 성능 향상 효율성 감소의 주된 원인은 향상된 연산 능력에 맞추어 증가된 데이터 요구를 메모리가 적절하게 처리하지 못하기 때문이다. 결과적으로 GPU의 성능 향상 효율성을 더욱 높이기 위해서는 연산 능력 향상과 더불어 시스템 자원들 또한 GPU 구조에 맞게 변경되어야 함을 구체적인 실험을 통해 알 수 있다.

GPGPU 기반의 깊이 정보를 이용한 고속 얼굴 추적에 대한 연구 (A Study on High Speed Face Tracking using the GPGPU-based Depth Information)

  • 김우열;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1119-1128
    • /
    • 2013
  • 본 논문에서는 얼굴을 검출하고 GPU 기반으로 얼굴을 고속으로 추적하는 알고리즘을 제안하였다. 얼굴 검출에서는 깊이영상과 RGB영상을 사용하고, 기존의 방법인 Adaboost을 이용하지만 움직임 영역과 피부색 영역을 이용하여 Adaboost의 입력영상을 제한하여 얼굴을 검출하였다. 얼굴 검출과는 다르게 얼굴 추적은 깊이 정보만을 사용하였다. 기본적으로 얼굴 추적에서는 템플릿과 매칭 된 블록을 찾는 템플릿 매칭 방법을 사용하였다. 또한 고속으로 얼굴을 추적하기 위해서 GPU를 이용하여 템플릿 매칭을 병렬하여 연산하였다. 실험결과 CPU와 GPU을 비교 하였을 때 GPU 수행속도가 최대 49배까지 향상되는 것을 확인하였다.

계층적 메모리 구성에 따른 GPU 성능 분석 (Analysis on the GPU Performance according to Hierarchical Memory Organization)

  • 최홍준;김종면;김철홍
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.22-32
    • /
    • 2014
  • 병렬 연산에 최적화된 하드웨어를 가진 GPU를 그래픽스 작업 이외에 범용 작업에 활용하고자, 최근에 GPGPU 기술이 큰 관심을 받고 있다. GPU와 같은 대용량 병렬처리 장치에서는 메모리 시스템이 성능에 큰 영향을 미치게 된다. GPU에서는 메모리 시스템의 효율성을 향상시키기 위하여, 메모리 대역폭 사용률을 감소시켜주는 계층적 메모리 구조와 메모리를 요청하는 트랜잭션을 줄여주는 메모리 주소 접합과 메모리 요청 합병 등의 기술들을 사용한다. 본 논문에서는 메모리 시스템 효율성 향상을 위해 활용되는 기법들이 GPU 성능에 미치는 영향을 정량적으로 평가하고 분석하기 위해, 다양한 메모리 구조에 대한 실험을 수행한다. 실험 결과에 따르면, 캐쉬를 사용하지 않는 경우에 비해 8KB, 16KB, 32KB, 64KB의 L1 캐쉬를 추가하면 평균적으로 15.5%, 21.5%, 25.5%, 30.9%의 성능이 각각 향상된다. 하지만, 일부 벤치마크 프로그램에서는 데이터 일관성을 유지하기 위하여 메모리 트랜잭션이 증가함에 따라 오히려 성능이 감소하는 결과를 보이기도 한다. 그리고 메모리 요청에 대한 미스가 많이 발생하는 경우에는 캐쉬 레벨이 증가함에 따라 평균 메모리 접근 지연 시간이 증가하기도 한다.

GPGPU 환경에서 최대휘소투영 렌더링의 고속화 방법 (Acceleration techniques for GPGPU-based Maximum Intensity Projection)

  • 계희원;김준호
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.981-991
    • /
    • 2011
  • 최대휘소투영은 볼륨 렌더링의 한 기법으로, 의료영상을 판독하기 위해서 중요한 기능이다. 광선 투사법을 이용한 최대휘소투영 렌더링은 비교적 높은 화질의 영상을 생성하나 많은 연산을 요구한다. 본 연구는 그래픽 처리장치(GPU : Graphic Process Unit) 에 일반 연산을 적용하는 GPGPU(General-purpose computing on Graphic Process Unit) 기술을 이용하여 최대휘소투영 렌더링의 속도를 향상시키는 방법에 관한 연구를 수행한다. 본 논문에서는 GPGPU를 수행 할 수 있는 프로그래밍 언어인 CUDA(an acronym for Compute Unified Device Architecture)를 기반으로 고속 광선 투사법을 구현하며, CUDA 환경에 적함한 가속화 방법을 제안한다. 구체적으로, 블록 기반 공간 도약 기법을 적용하여 불필요한 부분을 도약하고, 이분 이동법을 통해 블록 경계면의 탐색을 고속으로 수행하며, 초기 값 추정 알고리즘을 이용하여 공간 도약 확률을 향상시킨다. 이를 통해 화질 손실 없이 최대휘소투영 렌더링의 가시화 속도를 크게 향상시킨다.

GPU 컨테이너 동시 실행에 따른 응용의 간섭 측정 프레임워크 설계 (A design of GPU container co-execution framework measuring interference among applications)

  • 김세진;김윤희
    • KNOM Review
    • /
    • 제23권1호
    • /
    • pp.43-50
    • /
    • 2020
  • 범용 그래픽 처리 장치(General Purpose Graphics Processing Unit, GPGPU)는 최근 고성능 컴퓨팅에서 중요한 역할을 함으로써, 여러 클라우드 서비스 공급업체들은 GPU 서비스를 제공하기 시작했다. 컨테이너를 사용하는 클라우드 환경에서 대부분의 클러스터 오케스트레이션 플랫폼은 정수 개의 GPU를 작업에 할당하고 다른 작업과 이를 공유하는 것을 허용하지 않는다. 이 경우 작업이 GPU에서 코어 및 메모리 등 자원이 집중적으로 필요하지 않다면 GPU 노드의 리소스 사용률이 저하될 수 있다. GPU 가상화는 응용의 동시 수행을 가능하게 하며 자원을 공유할 수 있는 기회를 제공한다. 하지만 응용의 동시 수행 성능은 동시 수행되는 응용의 특성과 노드 안에서 자원 경쟁으로 인한 간섭에 따라 달라질 수 있다. 본 논문은 컨테이너 오케스트레이션 플랫폼인 쿠버네티스(Kubernetes)를 기반으로 다중 서버 생성 및 실행을 통하여 GPU를 공유함으로써 발생할 수 있는 간섭을 측정하기 위한 프레임워크를 제안한다. 본 프레임워크를 통해 다양한 스케줄링 방법으로 GPU에서 여러 작업을 실행함으로써 이에 따른 성능 변화를 조사하였으며, 이를 통해 GPU 메모리 사용량 및 컴퓨팅 리소스만 고려해서는 최적의 스케줄링을 할 수 없음을 보인다. 마지막으로 해당 프레임워크를 사용하여 응용들의 동시 실행에 따라 발생한 간섭을 측정한다.

GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성 (Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method)

  • 구자명;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1908-1918
    • /
    • 2013
  • 자유시점 또는 오토스테레오스코픽 비디오 서비스는 3차원 영상을 제공하는 차세대 방송 시스템으로, 여러 시점의 영상들이 필요하다. 본 논문에서는 가상 시점 영상을 고속 생성하기 위해 알고리즘 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)를 이용한 General Propose Graphic Processing Unit(GPGPU) 기반의 중간시점 영상 고속 생성을 위한 최적화 기법을 제안한다. 제안한 방법은 좌/우 깊이영상을 병렬화시킨 스테레오 정합알고리즘을 이용하여 변위정보를 얻은 후, 깊이 당 변위증분을 계산하여 사용한다. 계산된 변위증분을 사용하여 해당 각 화소들의 깊이 값을 이용하여 좌/우 영상들을 원하는 위치의 중간시점으로 영상을 이동시킨다. 그 다음, 비폐색영역들을 서로 상호 보완하여 없앤 다음에 남은 홀들은 홀 필링으로 없애 최종 중간시점 영상을 생성한다. 제안한 방법을 구현하여 여러 실험 영상에 적용한 결과, 생성된 중간시점 깊이영상의 화질은 평균 PSNR 30.47dB이었으며, Full HD급 중간시점 영상을 초당 38 프레임 정도 생성하는 속도를 보였다.