• Title/Summary/Keyword: 범밀도함수론계산

Search Result 5, Processing Time 0.017 seconds

Local Hard-Soft Acid-Base 이론을 이용한 유기 반응의 분석

  • Jeong, In-Chun;Son, Mun-Gi;Sin, Seok-Min
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.127-139
    • /
    • 2014
  • Hard-Soft Acid-Base (HSAB) 이론은 일반적인 유기, 무기반응의 반응성을 설명하는데 사용되어 왔다. 밀도범함수이론(DFT)을 기반으로 한 계산을 통하여 반응을 기술하기 위해 필요한 화학 퍼텐셜, global/local hardness/softness와 Fukui 함수 등을 얻을 수 있다. B3LYP 수준 하에서 DFT 양자계산을 이용하여 유기 반응을 분석했을 때 local HSAB 이론의 적용여부와 장단점을 알아보고자 하였다. 1-subtituted 다이엔과 비대칭 친다이엔체를 이용한 딜스-알더 반응의 경우 local HSAB 이론을 적용시켜, 오쏘 이성질체가 주 화합물인 이유를 설명할 수 있었다. 작용기를 변화시켰을 때 나타나는 차이점에서 규칙적인 경향성을 볼 수 없다는 사실을 통해서 전자, 입체 효과로 딜스-알더 반응을 분석할 수 없었던 이유를 이해할 수 있었다. Thiocyanate 음이온의 알킬화 반응의 경우 local HSAB 이론을 적용시켰을 때, 얻은 값을 통해서 반응 지점의 선호도를 예측할 수 없었는데 이는 thiocyanate를 생성하는 반응이 속도론적 지배 하에서 우세하는 반응이기 때문이다.

  • PDF

DFT Calculations for the Hydrogen Transfer Reaction in Bis(μ-oxo)dicopper-enzyme (DFT방법을 이용한 Bis(μ-oxo)dicopper-enzyme의 수소이동반응 연구)

  • Park, Ki-soo;Kim, Yong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.499-504
    • /
    • 2009
  • Metals have often played important roles to some enzymatic reactions that are essential to biological processes. Therefore many scientists have studied the reaction mechanisms of catalytic reactions in metaloenzymes for many years. Methane MonoOxygenase (MMO) is an enzyme that oxidize methane to methyl alcohol. Recently Tolman et al. studied a model reaction for MMO, which is a hydroxide transfer reaction in Bis-($\mu$-oxo)-dicopper complex, and suggested several possible mechanisms. Later a two-step mechanism, which is hydrogen transfer followed by hydroxide rebound, was proposed from theoretical studies. In this study we calculated the reactant, product, and the transition state structures, and energetics of the first hydrogen transfer reaction using various DFT methods including recently developed the MO6 family of DFT, namely, MO6, MO6L, and MO6-2X. We found that the M06/6-31G(d,p)/LANL2DZ method reproduce the experimental XRD structure of reactants very well. The TS structures, barrier heights, and reaction energies depend very much on the size of the basis sets.

Structural Study of Interface Layers in Tetragonal-HfO2/Si using Density Functional Theory (범 밀도함수론을 이용한 정방정계-HfO2/Si의 계면 층 구조 연구)

  • Kim, D.H.;Seo, H.I.;Kim, Y.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • We calculated tetragonal-$HfO_2$/Si superstructures using density functional theory. When a and b-axes of cubic-$HfO_2$ were increased to be matched with those of Si for epitaxy contact, c-axis was decreased by 2%. Eight models of interface layers were produced by choosing different terminating layers of tetragonal-$HfO_2$ and Si substrate at the interface. It was found that tetragonal-$HfO_2$ $(004)_{1/4}$/Si $(004)_{3/4}$ superstructure was the most favorable and tetragonal-$HfO_2$ (004)$_{1/4}$/Si (002) superstructure was the most unfavorable. In tetragonal-$HfO_2$ $(004)_{1/4}$/Si (002) superstructure, there were two oxygen vacancies in tetragonal-$HfO_2$ as two oxygen atoms were moved to Si substrate located at the interface.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite (양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구)

  • Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.