• 제목/요약/키워드: 버켓기초

Search Result 26, Processing Time 0.024 seconds

Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay (점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석)

  • Kim, Sung-Ryul;eong, Jae-Uk;Oh, Myounghak;Kwon, Osoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.105-111
    • /
    • 2012
  • Bucket foundations, which are used in the foundations of offshore wind turbines, should be able to withstand large amounts of horizontal and moment loads. Tripod bucket foundation, which combines three single buckets, has been used to increase horizontal and moment capacities. This study performed numerical analysis using ABAQUS (2010), to analyze the group effect and the bearing capacity of a tripod bucket in clay. Parametric studies were performed varying the bucket spacing ratio S/D (S=spacing between the centers of the bucket and the tower; D=diameter of the bucket) and depth ratio L/D (L=embedded length of skirt). The applied constitutive models were a linear elastic perfectly plastic model with Tresca yield criteria for normally consolidated clay and an elastic model for buckets. Loading in the vertical, horizontal, and moment directions was simulated with an increase in each movement at a reference point. The bearing behavior and the capacities of a single and a tripod bucket were compared. Capacity evaluation method of the tripod bucket was suggested using the capacity of a single bucket.

Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge (원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가)

  • Kim, Jae-Hyun;Lee, Cheol-Ju;Shin, Hee Jeong;Kim, Seong Hwan;Goo, Jeong Min;Jung, Chung Yeol;Jeon, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.61-73
    • /
    • 2023
  • Suction buckets are feasible options for offshore foundations to support subsea structures in deep water, enabling suction-induced installation by pumps. Recently, hybrid suction bucket foundations that combine single or multiple suction buckets with a mat foundation have been considered. The foundations effectively increase the load capacity while reducing construction costs. However, there is still insufficient experimental validation of hybrid suction bucket foundations regarding their bearing capacity. Furthermore, research on the horizontal load capacity under low vertical and moment loads is inadequate. In this study, we investigate the feasibility of using a hybrid suction bucket foundation for subsea installations in clay. We considered two types of hybrid suction bucket foundations: a circular mat with a single suction bucket and a square mat with multiple buckets. Centrifuge tests were performed to understand the hybrid suction bucket foundation characteristics under horizontal loads and their corresponding bearing capacity. Particularly, we verified the effect of the mat foundation and bucket embedment depth on the horizontal bearing mechanism and capacities. Results confirmed that the hybrid suction bucket foundation outperforms the single suction bucket.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.

Accumulated Rotations of Suction Bucket Foundations under Long-term Cyclic Loads in Dry Sandy Ground (건조 사질토 지반에 설치된 석션 버켓기초의 장기 반복하중에 의한 누적회전각 산정)

  • Lee, Si-Hoon;Choi, Changho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.69-78
    • /
    • 2016
  • A suction bucket foundation has been considered to be a potential foundation type for offshore wind turbines. A suction bucket foundation is usually installed in soft soil, so the accumulated displacement of the foundation may occur under long-term cyclic loads. In this study, a series of 1-g model tests were performed to analyze the accumulated rotation of suction bucket foundations under long-term cyclic horizontal loads. The dry model ground was prepared to have two different soil densities by air-pluviation method. The model tests were performed varying the embedment depth of the suction bucket, the soil density, and the amplitude of cyclic load. A one-way horizontal cyclic load was applied over $10^4$ cycles. Test results showed that the accumulated rotation of the suction bucket foundation increased with the increase in the number of cycles and load magnitudes. Based on the model test results, a new equation was proposed to evaluate the accumulated rotation of the suction bucket foundations in dry sandy ground under long-term cyclic horizontal loads.

Soil-structure interaction analysis for the offshore wind tower with bucket foundation (버켓기초를 가진 해상풍력타워의 지반-구조물 상호작용해석)

  • Lee, Gyehee;Kim, Sejeong;Phu, Tranduc
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.244-252
    • /
    • 2014
  • In this study, seismic responses of the offshore wind tower supported by bucket foundation are analyzed in consideration of soil-structure interaction. The program SASSI is used as analyzing tool and an artificial seismic input for soft soil is used as input motion. The H/R ratio of bucket, the stiffness of bucket foundation and the soil stiffness are considered as parameters and its effects are estimated. The responses of structure are obtained at the base and the nacell. As results, the effects of H/R ratio, the stiffness of bucket and the stiffness of site are generally denoted different response tendency at the base and the nacell. However, these whole responses of the base and the nacell are much lager than that of rock site. Therefore, the consideration of this phemomia affect to the response of offshore wind tower with bucket foundation largely.

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

Ship Collision Behaviors of Offshore Wind Tower on Bucket Foundation (버켓기초를 가진 해상풍력타워의 선박충돌 거동)

  • Lee, Gye-Hee;Park, Jun-Seok;Hong, Kwan-Young
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.138-147
    • /
    • 2012
  • In this paper, the various parametric study of collisions between a offshore wind tower and vessels were performed to estimate the ultimate behaviors of the bucket foundation and the tower. Additionally, the stability of the foundation and the energy dissipation capacities of the tower were analyzed. The results shows that the collision energy of the vessel was mainly dissipated by the plastic deformation energy of the tower and the foundation system shown enough bearing capacity against to this severe loading condition.

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.

Buckling Behaviors of Bucket Foundation for Offshore Wind Tower (해상풍력타워용 버켓기초의 좌굴거동)

  • Lee, Gye Hee;Tran, Duc Phu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2013
  • In this study, the buckling behaviors during the installation of a bucket foundation for an offshore wind turbine tower were investigated. The objective structure was modeled by using a commercial structural analysis program, and the buckling behavior of the model was estimated as Batdorf's parameter Z in the design code. The surrounding soil conditions and loading condition were applied to the verified analysis model. The effects of parameters such as the longitudinal stiffeners and driven depth were estimated for the buckling capacity. As a result, it was found that the longitudinal stiffeners could drastically increase the buckling capacity in a specific region. In addition, the buckling capacities increased linearly when considering the effect of the surrounding soil.

Jacking Penetration Resistance of Bucket Foundations in Silty Sand Using Centrifuge Modelling (실트질모래 지반에서 버켓기초의 압입저항력에 대한 원심모형실험 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Lee, Kyu-Yeol;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • Penetration resistance of bucket foundations with skirt wall in the silty sand of the western coast of Korea was analyzed by centrifuge modelling. The penetration resistance is induced when the bucket foundations are jacked into the soil without suction, and is directly related to the self-weight penetration depth. The procedure by Houlsby and Byrne (2005), which takes into account the effect of stress increase by frictional resistance of skirt wall, was utilized to generate the penetration resistance similar to the experimental results. This paper describes the methods by which major parameters such as lateral earth pressure coefficient and friction angle between the skirt wall and the soil are evaluated. The effect of changes in these parameters on the predictions is analyzed. Also, observed soil behaviour during jacking penetration is investigated.