• Title/Summary/Keyword: 밸브 형상

Search Result 181, Processing Time 0.029 seconds

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

밸브의 최적설계를 통한 고효율 왕복동식 압축기 - 고효율 토출밸브의 개발 -

  • Ju, Jae-Man;O, Sang-Gyeong;Kim, Gwi-Gwon;Kim, Saeng-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1437-1443
    • /
    • 2000
  • 왕복동식 압축기에서 고효율 토출밸브를 개발하였다. 멈치개(stopper)가 있는 외팔보 형태의 토출 밸브는 밸브 및 멈치개의 형상과, 밸브와 멈치개 및 밸브시트에 존재하는 오일에 의한 점성력(sticky force) 등에 의한 밸브의 개폐과정과 동적 거동특성의 변화를 유발한다. 본 논문에서는 오일막에 의한 점성력을 측정하고, 그에 의하여 유발되는 지연시간(time-lag)을 측정할 수 있는 실험장치를 개발하였다. 또한, 토출밸브의 개폐과정을 최적화하여, 과압축 손실을 최소화한 토출밸브계를 개발하였다. 개발된 밸브계에 대하여 실험적인 방법으로 그 효과를 검증하였다.

  • PDF

Numerical Study on the Sealing Safety of a Valve Packing in a LPG Cylinder (LPG 용기용 밸브패킹의 누설안전에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.34-39
    • /
    • 2007
  • In this paper, the FEM result has been presented for a sealing safety between a valve packing and a valve seat during a open and close operation in a LPG cylinder. The sealing operation of a LPG valve is completed when the valve packing in which is made by a nylon-66 polymer is to stop a LP gas flow, which flows out from the outlet of a brass pipe in a LPG cylinder. The contact sealing mechanism of the valve may be classified by a flat contact of an unused valve packing and a circular groove contact of an used valve packing in a current LPG valve. Based on the FEM and experimental investigations the sealing force, 4.9 MPa for a flat contact mode of the unused valve packing is a little high compared to that of the used valve packing, which shows a circular groove contact geometry against a valve seat. But these sealing pressures for two contact modes are very low compared to the ultimate strenath 83 MPa of the nylon-66 and this may be designed with a excess strength of the valve.

  • PDF

Bingham Charateristics of Electrorheological Fluid and Its Application to ER valve and ER Damper (전기유변유체의 빙햄특성과 밸브 및 댐퍼에의 응용)

  • 배종인
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 1998
  • 전기장이 인가되고 있는 유로를 유동하는 전기유변유체의 기본성질을 파악하기 위 한 실험 및 해석적 연구를 수행하여 빙햄유체로서의 유효성에 대해 알아보고 전기장과 유로 면 형상 및 진동유동으로 인한 영향에 대해 조사함으로써 ER밸브 및 ER대퍼로의 응용과 관련한 감쇄력 제어에 대해 검토하였다. 첫 번째 실험은 ER밸브의 높이가 2mm인 적극면이 평탄한것과 요철로 된 것을 사용하여 압력손실을 압력변환기로 측정함으로써 전기장 및 유 로형상에 대한 영향을 알아보았다. 압력손실 및 전단응력이 전기자세기와 함수관계를 가짐 을 알수 있었고 전기장세기와 유속의 변화시 손실계수에 의한 ER효과의 상이함이 확인되었 으며 레이놀즈수가 커지면 항복전단응력의 영향은 나타나지 않았다. 두 번째 실험은 실린더 를 정현파로 진동시켜 ER밸브에서 감쇠력제어가 가능한가를 알아보고 빙햄유체모델로 설계 된 ER댐퍼의 모델과 비교하였다. ER배르와 ER댐퍼의 수학적 모델을 시뮬레이션한 결과는 약간 벗어남이 보이기는 하나 실험결과와 일치하요 있다. 이것은 ER유체를 단순히 빙행유 체로 취급할수없으나 거시적으로는 빙햄유체로 취급할수 있음을 시사한다.

  • PDF

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

An Optimization for Flow Control Butterfly Valve using Grey Relational Analysis (회색 관계 분석을 이용한 유량 제어용 버터플라이밸브 형상 최적화)

  • Lee, Sang Beom;Lee, Dong Myung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.359-366
    • /
    • 2014
  • This paper considered optimization method of appending a shape on a disc in an attempt to improve core functions, which are inherent in flow characteristics. The paper also verifies the optimization method of appendage shape with a Class 150 200A Butterfly valve. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of form parameters by grey relational analysis and analysis of mean (ANOM). And this study sets flow coefficient as an object functions for optimization, and the conventional disc model and the optimal appendage shape on disc model are compared by computational fluid analysis. The paper concludes that an optimal appendage shape on disc model achieves wider usability by a wider operating range.

Structural Analysis of a Gas Generator Oxidizer Shut-Off Valve (가스발생기 산화제 개폐밸브 구조 해석)

  • Ryoo, Seung-Hun;Hong, Moon-Geun;Yoo, Jae-Han;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.413-416
    • /
    • 2009
  • For the liquid rocket engine, the gas generator oxidizer shut-off valve which supplies the oxidizer to a gas generator needs structural safety under the internal pressure, which is higher than the chamber pressure. In this study, static stress analyses of the various design in the vicinity of the region where the stress is concentrated were performed for designing the lightweight valve, A lightest model of which the concentrated stress does not exceed the yield criteria has been suggested. Also, whole size effect of the valve on the concentrated stress was investigated.

  • PDF

Shape Design based on Topology Optimization for Manufacturing of Lightweight Valve Disc by 3-D Printing (3차원 프린팅에 의한 경량 밸브 디스크 제조를 위한 위상최적화 기반의 형상 설계)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • In this study, the lightweight design of butterfly valve disc component for power plant based on topology optimization was performed. Here, commercial finite element (FE) analysis software was used. The external shape of the basic disc model was not deformed, and the internal element density was removed to make it lightweight. Optimal design was performed each other after the disc plate and two brackets attached on the surface of the disc were separated. Once the optimal shapes were selected, they were assembled to build up the 3-D lightweight valve disc model. After applying pressure to this model, FE analysis was performed to confirm the structural safety.

Shape Optimization of Ball Valve for High Temperature (고온용 볼 밸브의 형상 최적화)

  • Kim, Nam-Hee;Byeon, Ji-Hoon;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The main purpose of the ball valve ball is to be moved by the rotation of the stem when fully open or completely closed. In this study the heat of the initial model, which used a structure interaction analysis technique, tried to examine the structural safety of the high temperature for the ball valve. In the initial model the stress of the exiting sheet was more than the yield strength. We selected two design shapes with variables of length and thickness for the optimization of the sheet. The Kriging interpolation method was applied to a meta-model-based optimization technique. As a result, it was possible to find a thickness and length for the sheet within the yield strength. This was done by measuring the value of the capacity coefficient of the valve and evaluating the performance of the ball valve.

Improvement of a Flow Coefficient for the Recirculation Chill-down Flow in a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 재순환예냉 유로의 유량계수 개선)

  • Hong, Moongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2017
  • The improvement of a flow coefficient for the recirculation chill-down flow in a main oxidizer shut-off valve has been presented. The flow coefficient, which is mainly affected by the recirculation outlet port size and the configuration inside the valve, has been predicted with measured flow coefficient values. The comparison of experimentally measured flow coefficient with the predicted value shows the effect of valve inside configuration on the flow coefficient. Consequently, the flow coefficient is twice the previous value and about 75% of the pressure loss assigned to the main oxidizer shut-off valve can be used for additional pressure losses for other components in the recirculation chill-down system of a launch vehicle.