• Title/Summary/Keyword: 밸브 형상

Search Result 181, Processing Time 0.026 seconds

Post-annealing Effect of Giant Magnetoresistance-Spin Valve Device for Sensor (센서용 거대자기저항 스핀밸브소자의 열처리 효과)

  • Lee, Sang-Suk;Park, Sang-Hyun;Soh, Kwang-Sup;Joo, Ho-Wan;Kim, Gi-Wang;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.172-177
    • /
    • 2007
  • In order to detect of the magnetic property in the cell unit, we studied the GMR-SV (giant magnetoresistance-spin valves) biosensor, which was depended on the micro patterned features according to two easy directions of longitudinal and transversal axes. Here, the multi layer structure was glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe. The uniaxial anisotropy direction was applied to the patterned biosensor during the deposition and vacuum post-annealing at $200^{\circ}C$ under the magnitude of 300 Oe, respectively. Considering the magnetic shape anisotropy effect, the size of micro patterned biosensor was a $2{\times}5{\mu}m^2$ after the photo lithography process. By our experimental results, we confirmed that the best condition of GMR-SV biosensor should be the same direction of the axis sensing current and the easy axis of pinned NiO/NiFe/CoFe triple layer oriented to the width direction of device, and the direction of the easy axis of free CoFe/NiFe bilayer was according to the longitudinal direction of device.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

Evaluation on Mechanical Properties of a Smart Composite Using the finite Element Method and the Acoustic Emission Technique (FEM과 AE를 이용한 지적복합재료의 기계적특성 평가)

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.233-239
    • /
    • 2004
  • Smart material is used in various applications such as for glass frame, for medical instruments and for a part of sensors. Smart composite materials ran be applied to a part of aircraft and to the on-line monitoring system for industrial structures, using the shape memory effect. However, it is very difficult to simulate and analyze the shape memory effect in smart composites. In this paper, a two dimensional axisymmetric model was proposed to analyze the smart composite of one fiber and matrix using the finite element method(FEM). The finite element analysis was carried out in two renditions of the room temperature(293K) and a higher temperature (363K). The results we.e compared with the experimental results to confirm the validity of the analysis. In addition, the acoustic emission(AE) technique was used to study the microscopic damage behavior and the effect of pre-strains on TiNi/A16061 shape memory alloy composite.

Pressure Recovery in a supersonic ejector of a high altitude testing chamber (초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.833-837
    • /
    • 2010
  • This study aims at finding an optimal exhaust diffuser design of a high altitude testing chamber for a low bypass turbofan engine (F404-402) with thrust pound force of 17,700 and air mass flow rate of 66kg/s ejecting at a speed of Mach 1.66. The final proposed ejector size has better pressure recovery characteristics and targets to reduce operational cost at engine performance testing. Conventional high altitude test chamber layout was adopted and first drawn in two dimensions using Autocad software so as to determine the gas path, the ejector frontal size was then determined from gas dynamics equations considering traditional gas ejection method where both the engine exhaust and cell cooling air are exhausted via the ejector. Modification to a smaller ejector with an alternative secondary cell cooling exhaust port was then performed and modelled in 3D using Solid Works software.

  • PDF

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

Characteristics of In-cylinder Steady Flow using PIV for Different Intake Port Geometries in a 4-valve Gasoline Engine (PIV에 의한 4밸브 가솔린기관의 흡기포트 형상에 따른 정상유동 해석)

  • 조규백;전충환;장영준;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.188-196
    • /
    • 1997
  • Many researchers have developed the measurement technique of in-cylinder flow characteristics and found the effect of intake port geometries on engine performance. The flow characteristics of four-valve cylinder head were examined in a steady flow rig for different intake ports. Tumble intensity of intake configurations with different entry angles were quantified with a tumble meter. The velocity and angular momentum distributions in the tumble adaptor were measured under steady conditions with PIV(Particle Image Velocimetry). We have obtained the results that flow structure becomes complicated by valve interference at low valve lift. As the valve interferences were reducing and the flow pattern changed to large vortex structure with tumble direction, intake ports with different entry angles have different tumble centers. Tumble eccentricity of intake port with low entry angle was large, so that the port had relatively much angular momentum compared to others which was expected to improve combustion performance.

  • PDF

The Effects of the Intake Value Type on the Intake Flow(I) -The Axial Velocity Distribution by the Model- (흡입밸브 형상이 흡입유동에 미치는 영향(I) -모델에 의한 축방향속도분포-)

  • 하대진;박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 1989
  • This paper deals with the experimental study of the turbulent flow fields by the hot-wire anemometer and the density fields by the Schlieren photography. In this study, the air mixed with CO$_{2}$ was used to visualize and to study this process and experimental parameters used were valve lift and valve shape. The results obtained are as follows: 1) The axial velocity of mixture flow passing a valve is changed greatly by valve seat angle and valve lift. Especially, it is changed more when the valve seat angles is 30.deg. and 45.deg. than when these are 60.deg. and 90.deg. 2) Experimental results by hot wire anemometer and Schlieren apparatus are very close together. The most satisfactory results are shown when the valve seat angle is 45.deg.

  • PDF

Valve Support Design for Improved Flexural Rigidity Against Strong Earthquake (강진 대비 굽힘 강성 향상을 위한 밸브지지대 형상 설계)

  • Kim, Dae Jin;Kim, Hyoung Eun;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.75-80
    • /
    • 2017
  • In this study, seismic performance of various types of valve supports in terms of flexural rigidity are evaluated by FEA using equivalent static load method. Flexural rigidity of the existing two types of valve supports can be effectively improved by simply adding one more bracket on the other side of support. New types of polygonal valve supports with a concept of fully stressed beam theory are suggested and it is verified that the new supports are rigid enough to withstand stronger earthquake which we should be prepared for.

Development of Heat Control Valve Using SMA and Remote Controller for House Heating System (형상기억합금을 이용한 난방용 온도조절 밸브 및 원격 제어장치 개발)

  • Choi, Jeongju;Yeom, Jeongkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.6-11
    • /
    • 2010
  • For the purpose of reducing the energy consumption in the house heating, the various devices have been developed. One of these is to control the flow in the heat pipe and the flow control valve using shape memory alloy(SMA) spring is proposed in our study. The proposed house heating system is to save the gas consumption and the remote control system is designed for the convenience of using the proposed valve. The developed valve consists of SMA spring, disk, return spring, and regulation handle. The regulation handle is for supplying the additional hot water and is controlled by remote-control-motor. In order to design the remote control system, the Zigbee wireless communication protocol is used. The performance of the proposed valve structure is shown through the experimental result.

An Analysis and Test Results of Damping Characteristics of ER Dampers with Two Different Valve Types (ER 댐퍼의 밸브 형상에 따른 감쇠 특성의 해석 및 실험)

  • 장보영;이종민;김창호;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.608-613
    • /
    • 1998
  • Damping characteristics of ER dampers and flow rates inside ER valve with two different valve types were analyzed and compared with test results. Fluid flow inside ER valves was modeled by Bingham plastic model and Hagen-Poiseulli flow, while the equations of motion of total ER damper system were modeled by flow and hydraulic force balance. A general straight valve case was compared with a bended valve case which is newly tested for a possible improvement of ER damping force. As expected, the bended ER valve generates higher damping force and lower flow rates than the conventional straight ER valve due to additional flow restriction at the bended section. Analytical models of ER valve and ER damper generally predict reasonable performance characteristics of tested results. Therefore, developed analysis can be used for designing new ER dampers and simulation of ER semi-active suspension system as well.

  • PDF