• Title/Summary/Keyword: 밸브시스템

Search Result 850, Processing Time 0.023 seconds

Experimental Study of Compressor Surge for 250-hp Class Vehicular Turbocharger (250마력 급 차량용 터보차저 서지현상에 대한 실험적 연구)

  • Lee, Hyungchang;Han, Jaeyoung;Lee, Myeonghee;Im, Seokyoen;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.89-95
    • /
    • 2015
  • A surge phenomenon cause noise and pulsations in a turbo compressor, which is an unstable operating regime. Because surge protection ensures a safe compressor operation, it is important to understand the physics of the surge phenomenon. In this study, the surge characteristics of a 250-hp class turbo-compressor were evaluated experimentally. The experimental parameters were the rotational speed, opening angles of the inlet guide vane and exit valve, and inlet pipe diameter and flow rates of the inlet gases. The results showed that the compressor surge was very sensitive to the gas flow rates, exit pressure, rotational speed, and bypass flow rates.

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle (코안다 효과를 이용한 제트 특성에 관한 연구)

  • Lee, Dong-Won;Lee, Sak;Kim, Byung-Ji;Kwon, Soon-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.706-713
    • /
    • 2007
  • The jet structure issuing from a conventional convergent nozzle of variable expansion rate is compared with the result from the nozzle of a constant expansion rate using a normal type annular slit. In experiments, to investigate the jet characteristics between the two cases of jet, the mean velocity of nozzle exit is fixed to be 90m/s, the pressures along the jet axis and radial directions are measured by a scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution obtained by calculation from the measured static and total pressures is compared. Also to obtain the highly stable and convergence jets, it is turned out that the flow through a nozzle of constant expansion rate using the Coanda effect with an annular slit is the most preferable than that case through variable expansion rate nozzle. Furthermore, it is found that the pressure drop along the nozzle for the constant expansion rate nozzle is small relatively against to the case of variable expansion rate nozzle.

Manufacture of Control and Data Acquisition System of Centrifugal Thin Film Evaporator(Centri-Therm, CT-1B) by Computer (컴퓨터를 이용한 원심식 박막증발기의 제어 및 자료 수집 시스템의 제작)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Park, Moo-Hyun;Han, Bong-Ho;Bae, Tae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.479-485
    • /
    • 1990
  • For the automation of a evaporation process, computer based evaporation system was built and applied to acquisition of the process variables with an centrifugal thin film evaporator(Centri-Therm, CT-1B). Controls of the process conditions were performed by computer system for pressure, feeding rate, steam, evaporation temperature and flow rate of cooling water. The data acquisitions were also performed by computer system for the changes in the concentration and temperature readings for steam, evaporation and cooling water at the both inlet and outlet. The control and the acquisition variables were collected through the interface device and analyzed by programs using the PASCAL language. To control the feeding rate during the concentration process, inverter was used. The cooling water for the vapor condensation was controlled by the valve controller and should be supplied with the flow rate of 125 kg/h. The maximum vapor condensation rate was 41.7kg/h at the feeding rate of 125 kg/h.

  • PDF

Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve (전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성)

  • Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan;Ha, Soo-Jung;Jeon, Min-Ju;Park, Sung-Hyeon;Lee, Sang-Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

Applicability to Gas Engine and Small Sized Generator of Low Caloric Synthetic Gas Fuel from Coal Gasification (저발열량 석탄가스화연료의 가스엔진 및 소형발전기 적용연구)

  • Kim Tae-Kwon;Kim Sung-Roon;Jang Jun-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system and small sized generator. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. From the results of engine performance data, we have demonstrated that the engine modified by using the coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. And we have also demonstrated that the generator is well operated with various loads.

  • PDF

An Analytical Study on the Improvement of the Performance of Swivel Valve Tube Couplers (스위벨 밸브 튜브 커플러 개발을 위한 해석 연구)

  • Lee, Jun-Ho;Sung, Jae-Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • This study focused on the localization of swivel type tube couplers, which all depend on imports. In this study, a computer application analysis was performed using a finite element method as a preliminary study. In the major developments related to the objective of this study, the air brake system produced by car makers represents a different in the installation point of an air tank according to the type of cars or in the length and direction of its hoses and that leads to cause lots of problems. For solving such problems, the design of the major elements in a swivel type tube coupler was analyzed using a finite element method, and its validity was also verified. In the process that verifies the validity of this study, it was necessary to investigate how much external force affects the desorption of the tube support, which is the most important element in swivel type tube couplers. For achieving the investigation, a pressure test was implemented for the tube support according to the Federal Motor Vehicle Safety Standards(FMVSS). In the results of the pressure test, all samples satisfied the FMVSS. In addition, several tests were implemented by installing the sample of the developed swivel type tube coupler to an actual vehicle. In particular, rotation tests with various angles were applied by welding the swivel type coupler to an air tank through an argon welding process. In the results of the installing test for an actual vehicle, it was verified that the designed structure was determined as a structure that is able to endure the eccentric torque and deformation pressure applied to several directions that are the major problems in such fixed type tube couplers. Therefore, in the comparison of the performance of the developed product with the product of PARKER, it was possible to verify that the localized swivel type tube coupler developed in this study shows more excellent than that of the existing products by PARKER.

Performance improvement of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project (그린홈 보급확대를 위한 건물용 연료전지 보조기기의 성능 향상)

  • Lee, Sunho;Kim, Dongha;Kim, Minseok;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • According to green growth's policy, green-home dissemination's projects are promoting. Among them, stationary fuel cell systems are receiving attention due to high efficiency and clear energy. But it need absolutely to develop cost down technologies and improve system durability for commercialization of the fuel cell system. To achieve this objectives, in 2009, the Korean Government and "Korea Institute of Energy Technology Evaluation and Planning(KETEP)" launched into the strategic development project of BOP technology for practical applications and commercializations of stationary fuel cell systems, named "Technology Development on Cost Reduction of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project". This paper introduces a summary of improved BOP performances that has been achieved through the 2nd year development precesses(2010.06~2011.05) base on 1st year development precesses(2009.06~2010.05). The major elements for fuel cell systems are cathode air blowers, burner air blowers, preferential oxidation air blowers, fuel blowers, cooling water pumps, reformer water pumps, heat recovery pumps, mass flow meters, electrical valves, safety valves and a low-voltage inverter. Key targets of those elements are the reduction of cost, power consumption and noise. Invert's key targets are development the low -voltage technologies in order to reduce the number of unit cell in fuel cell system's stack.

  • PDF

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Fuel Spiking Test for the Surge Margin Measurement in a Gas Turbine Engine (연료 돌출 시험에 의한 가스터빈엔진의 서지마진 측정)

  • Lee, Jin-Kun;Lee, Kyung-Jae;Ha, Man-Ho;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal is superposed on the engine controller demand signals and the combined signals are used to control a fuel control valve. For the superposition, a subsystem composed of a fuel controller and a function generator is used. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the preliminary test, the fuel spiking signals are in good agreement with the dynamic pressure at the fuel line and at the compressor discharge point. After the preliminary test, a fuel spiking test to measure the surge point at a specific engine speed was performed. The test results show that the fuel spiking test is very effective in the measurement of surge.