• Title/Summary/Keyword: 밸브변위

Search Result 58, Processing Time 0.022 seconds

Magnetoresistive Properties of Array IrMn Spin Valves Devices (어레이 IrMn 스핀밸브 소자의 자기저항특성 연구)

  • Ahn, M.C.;Choi, S.D.;Joo, H.W.;Kim, G.W.;Hwang, D.G.;Rhee, J.R.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • To develop array magnetic sensors, specular-type giant magnetoresistive- spin valve (GMR-SV) film of Glass/Ta(5)MiFe(7)/IrMn(10)NiFe(5)/$O_2$/CoFe(5)/Cu(2.6)/CoFe(5)/$O_2$/NiFe(7)/Ta(5)(nm) was deposited by using a high-vacuum sputtering system. One of 15 way sensors in the area of $8{\times}8mm^2$ was Patterned a size of $20{\times}80{\mu}m^2$ in multilayer sample by Photo-lithography. All of 15 sensors with Cu electrodes were measured a uniform magnetic properties by 2-probe method. The highest magnetic sensitivity of MR and output voltage measured nearby an external magnetic field of 5 Oe were MS = 0.5%/Oe and ${\triangle}$V= 3.0 mV, respectively. An easy-axis of top-free layers of $CoFe/O_2/NiFe$ with shape anisotropy was perpendicular to one of bottom-pinned layers $IrMn/NiFe/O_2/CoFe$. When the sensing current increased from 1 mA to 10 mA, the output working voltage uniformly increased and the magnetic sensitivity was almost stable to use the nano-magnetic devices with good sensitive properties.

Development of Compact High Voltage Driving Amplifier for Piezo Ceramic Actuator (압전 세라믹 액추에이터를 위한 소형 고전압 구동 증폭기 개발)

  • Kim, Soon-Cheol;Han, Jung-Ho;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5409-5415
    • /
    • 2012
  • Piezo ceramic actuator is used for various industrial products such as spray, dispenser, and valve control etc. Since the deflection of the piezo ceramic element depends on the applied voltage, it is required a power amplifier with high voltage supply for driving the piezo ceramic actuators. In this paper, we develop a simple H-bridge type power amplifier and a compact flyback type high voltage switching mode power supply for piezo ceramic actuators. It is easy to adjust the amount of energy input to piezo ceramic actuator by pulse-width-modulation with H-bridge type power amplifier.

Displacement Control of Pneumatic Actuator Equipped with PLC and Proximity Sensors (PLC와 근접센서를 이용한 공압 실린더의 변위제어)

  • Kim, Gun-Hoi;So, Jung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • A pneumatic system was proposed to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the proposed valve system. The proposed pneumatic system consisted of a combination of pneumatic valves, two proximity sensors, and a programmable logic controller(PLC). The position controller is based on the PLC controller connected with the proximity sensors. Displacement accuracy of the pneumatic cylinder stroke was tested by varying air pressures of the supply and discharge-side and strokes of the pneumatic cylinder. The displacement accuracy of the pneumatic cylinder stroke increased as the supply and discharge side of air pressure increased at the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with a fixed supply and discharge side of air pressure of the pneumatic cylinder as 3.5 and $4.5kg/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder(i.e., standard deviation of 0.01 mm) was obtained at the supply and discharge side of air pressure of 4.0 and $5.0kg/cm^2$, respectively, and strokes of 170 and 190 mm among arbitrarily selected supply and discharge side air pressures and strokes.

Analysis of Dynamic Characteristics for High speed Plunger-type Solenoid (고속 플런저형 솔레노이드의 동특성 해석)

  • 백동기;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • In this paper, numerical analysis of dynamic characteristics for the plunger-type solenoid was used for a high speed solenoid valve with fast switching is discussed. The theoretic analysis of the electromagnetic field including eddy currents in the solenoid is studied by using permeance. The optimum value of design parameters which are a mass and an area of the plunger, a source voltage, a elastic modulus of the spring, a stroke, a number of turns, are obtained by the results of the investigation on effect of a parameter on others. And dynamic characteristics of acting solenoid that is the variation of magnetic force, displacement, solenoid current are investigated.

  • PDF

Development of Pressure Observer to Measure Cylinder Length of Harbor-Construction Robot (항만공사용 로봇의 실린더 길이 측정을 위한 압력 옵서버 개발)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.299-308
    • /
    • 2011
  • In this study, we develop a pressure observer to measure the cylinder length of a harbor-construction robot. For the robot control, sensors are required to measure the length of a hydraulic cylinder. The cylinder-position sensor is relatively expensive when the operating environment prohibits external approaches for the measurement of the cylinder position. LVDT or linear scales are usually mounted on the outside of the cylinder, which causes poor durability on a construction site. We use a pressure sensor to indirectly estimate the length of the cylinder. The pressure sensor is mounted inside a hydraulic valve box so that it is protected by the box and easy to waterproof for an underwater robot. By treating oil as a compressible fluid, we derive the nonlinear pressure dynamics as a function of the cylinder position, velocity, and pressure. The recursive least squares (RLS) algorithm is applied to identify the dynamic parameters, and the pressure observer estimates the cylinder position through the pressure acting on the head and the rod of the hydraulic cylinder. The position accuracy is relatively low, but it is acceptable for a construction robot that handles large armor stones.

Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave (진행파를 이용한 압전 마이크로 펌프의 설계와 해석)

  • Na, Yeong Min;Lee, Hyun Seok;Park, Jong Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.567-573
    • /
    • 2014
  • Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined.

Development of a Test Rig with Hydraulic Circuit for the Front Axle Suspension System of an Agricultural Tractor (농용트랙터 전방차축 현가장치를 위한 유압회로 시험기 개발)

  • Lee, Jung-Hwan;Cho, Bong-Jin;Kim, Hak-Jin;Koo, Kang-Mo;Ki, In-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.71-71
    • /
    • 2017
  • 농용트랙터의 운전자는 작업, 주행으로 인한 유해한 저주파 진동에 장시간 노출된다. 이에 따라 운전자에게 전달되는 노면 진동을 감소시켜주기 위한 전방차축 현가장치의 역할이 커지고 있다. 트랙터의 전방차축 현가장치는 주로 유압식으로 설계되어 있으며 이를 구성하는 유압요소 선정이 현가장치의 성능에 중요한 영향을 미친다. 하지만, 실제와 유사한 조건에서 트랙터 차체 무게만큼 큰 부하를 제공하여 유압회로의 성능을 실험하는 것은 비용과 시간 측면에서 비효율적이다. 본 연구에서는 이를 대체하기 위하여 개별 유압요소의 성능을 테스트 할 수 있는 현가장치 유압회로 요인 시험기를 설계제작 하였다. 이를 이용하여 개별 부품의 성능곡선을 센서를 이용 측정하였고 얻은 특성값을, 구성한 유압 시뮬레이션 모델에 반영하여 실제조건의 유압특성을 얻을 수 있는 유효한 시뮬레이션 모델 개발에 활용하였다. 또한, 실험실 환경에서 유압식 현가장치를 간소화 시킨 형태로 유압회로의 성능을 예비시험해 볼 수 있도록 다양한 센서를 장착 데이터를 취득할 수 있도록 하였다. 개발한 요인 시험기는 하부에 설치된 가진 실린더를 이용하여 상부에 설치된 현가장치 실린더의 스트로크 변위와 속도에 따른 힘을 측정할 수 있도록 구성하였다. 이를 위해 현가장치 실린더의 헤드부와 로드부에 각각 압력센서를 설치하였으며 헤드부, 로드부의 압력 차이와 로드셀을 이용해 측정한 가진 실린더의 힘의 관계를 확인하였다. 상부의 현가 실린더 장치는 복동 형태로 제작되어 헤드부, 로드부 양쪽 방향으로 유량이 흐를 수 있도록 설계되었다. 이를 이용해 헤드부와 로드부 사이에 어큐뮬레이터, 가변 오리피스, 릴리프 밸브 등으로 유압회로를 구성하였으며 어큐뮬레이터 용량에 따른 힘의 변화, 가변 오리피스의 개도량에 따라서 전달되는 힘의 크기 등을 측정하였다. 하부의 가진 실린더는 사인파, 삼각파, 계단 입력, DC 레벨 등의 신호를 발생시킬 수 있도록 제작되었다. 신호의 주파수는 0~4Hz, 범위에서 사용자가 조절할 수 있도록 설정되었으며 계단응답 성능 측정 시험을 평가한 결과 정상상태오차는 0.470mm~0.536mm, 입상시간은 0.194초~0.202초, 정착시간은 0.230초~0.421초로 나타났다.

  • PDF

Performance Analysis and Test of the Small Piezoelectric-Hydraulic Pump Brake System (소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Nguyen, Anh Phuc;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.49-56
    • /
    • 2018
  • In this paper, the performance analysis and the experiment of the brake system using the small piezoelectric-hydraulic pump were performed. Initially, the 3-D modeling of the brake load components was performed for the construction of the brake system. Subsequently, modeling using the commercial program AMESim was performed. A floating caliper model was used as a load for modeling the brake system. Through the AMESim simulation, load pressure, check valve displacement and flow rate under no load state were calculated, and performance analysis and changes in dynamic characteristics were confirmed by adding brake load. A jig for use in fixing the brake load during performance test was manufactured. The flow rate was assessed under no load condition and load pressure formation experiments were performed and compared with simulation results. Experimental results revealed the maximum load pressure as about 73bar at 130Hz and the maximum flow rate as about 203cc/min at 145Hz, which satisfied the requirement of small- and medium-sized UAV braking system. In addition, simulation results revealed that the load pressure and discharge flow rate were within 6% and 5%, respectively. Apparently, the modeling is expected to be effective for brake performance analysis.