Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.583-583
/
2012
최근 석유 자원의 고갈로 인한 대체자원의 관심이 커지면서 박막 태양전지에 대한 연구가 활발히 진행되고 있다. 기존의 단일 박막 태양전지는 Shockley-Queisser limit인 40.7%가 변환 효율의 최대값으로 한계가 정해져있다. 이 한계를 넘기기 위하여 현재 여러 층의 박막을 쌓은 tandem 태양전지, 양자점을 이용한 태양전지, 그리고 중간밴드계 태양전지가 제시되고 있다. 중간 밴드계 태양전지는 이론적으로 변환 효율이 63.2%에 달하며 제조 공정이 매우 용이하다는 장점을 가지고 있다. 이중에 ZnSe는 에너지밴드갭이 상온에서 2.7 eV를 가지고 있는 물질로서 파란색 빛을 내는 발광소자로 각광을 받고 있고, 산소를 주입했을 경우에 p형이 되는 성질과 자연적으로 n 형인 성질로 인해 박막 태양전지로 응용성에 대한 관심이 커지고 있다. 산소나 질소를 주입했을 경우 페르미준위 근처에서 중간밴드가 형성되었다는 연구결과들은 ZnTe(O)나 GaNAs를 통하여 확인되었으나, 현재까지 ZnSe를 이용한 중간밴드 태양전지에 대한 연구결과들은 거의 없는 상태이다. 본 연구에서는 ZnSe를 다양한 기판 온도에서 펄스레이저 증착법을 이용하여 성장하였고 성장하는 동안 산소 노출조건을 조절하여 깊은준위 에너지밴드형성에 대한 연구를 진행하였다. 성장온도와 산소 노출량에 따른 깊은준위에 대한 변화를 관찰하기 위하여 photoluminescence 스펙트럼을 분석하였으며, 박막의 품질에 대해 조사하기 위하여 X-ray diffraction을 이용하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.2
/
pp.440-448
/
2004
In this paper, to make a solar cell of II-Ⅵ ZnTe compound semiconductor, we studied for the property of the transparent electrode(AZO) and Buffer layer(ZnO), and for reducing the energyband gap of optical absorber layer which are most effective on its efficiency. The ZnTe thin film was used the optical absorber layer of solar cell. Zn and Te were deposited using the co-sputtering method. The thin film was sputtered RF power of Zn/50W and Te/30W, respectively and a substrate temperature of foot under Ar atmosphere of 10mTorr. The energy band gap of the thin film was 1.73ev Then the thin film was annealed at $400^{\circ}C$ for 10sec under a vacuum atmosphere. The energy band gap of 1.67eV was achieved and the film composition ratio of Zn and Te was 32% and 68%. At the best condition, the Solar Cell was manufactured and the efficiency of 6.85% (Voc: 0.69V, Jsc: 21.408㎃/$cm^2$, Fill factor (FF): 0.46) was achieved.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.684-685
/
2013
p-형 반도체인 Cu(In,Ga)$Se_2$ (CIGS) 광 흡수 층은 이보다 에너지 밴드 간격이 큰 n-형 반도체와 이종 접합을 형성한다. 흡수층과 윈도우층 사이의 결정구조 차이와 밴드갭 에너지 차이를 완화시키기 위해 버퍼층이 필요하다. 버퍼층을 형성하는 물질로 화학적 용액 성장법(Chemical Bath deposition)을 사용한 CdS가 많이 적용되어 왔으나 Cd의 유해성 및 습식 공정으로 인한 연속공정에 대한 어려움이 있다. 따라서 버퍼층을 Cd을 포함하지 않는 ZnS, $In_2S_3$, (Zn, Mg)O 등과 같은 물질로 대체하여 원자층 증착법(Atomic Layer Deposition), 펄스레이져증착법(Pulsed Laser Deposition), 스퍼터링(sputtering) 등과 같은 건식으로 성장시키는 연구가 활발히 진행되고 있다. 본 연구에서는 $ZnO_{1-x}S_x$ ($0.2{\leq}x{\leq}0.4$)를 반응성 스퍼터링으로 증착하여 큰 밴드갭 에너지와 높은 광투과율를 갖는 버퍼층을 제작하였다. CIGS 박막의 손상을 줄여주기 위하여 RF 파워는 240, 200, 150, 100 W로 변화시켰다. CIGS 태양전지의 I-V 측정 결과, RF 파워가 150 W일 때 10.7%의 가장 높은 변환 효율을 보였고, 150 W 이상에서는 파워가 증가할 때 단락전류는 감소하였으며 개방전압은 다소 증가하였다. 반면 100 W에서 단락전류는 다소 증가하는 것에 반해 개방 전압이 급격히 낮아졌다. 이것은 파워에 따라 결합되는 산소의 양이 다르기 때문으로 생각된다.
Characteristics of nano-structured $SiO_2:Zn$ hollow powders prepared in the micro drop fluidized reactor process were investigated with respect to bandgap energy and surface activity. The $SiO_2:Zn$ hollow powders were successfully prepared continuously in the one step process with reasonable production efficiency, with varying the amount of THAM (tris(hydroxymethyl)-aminomethane) additive and concentration of $Zn^{2+}$ ions. The doping of $Zn^{2+}$ ions into $SiO_2$ lattice led to the reduction of bandgap energy by forming the acceptor level of $Zn^{2+}$ below the conduction band of $Si^{4+}$ ions. The hollow shape also contributed to reduce the bandgap energy of $SiO_2:Zn$ powders. The doping of $Zn^{2+}$ ions into $SiO_2$ hollow powders could enhance the surface activity by forming SiO-H stretching and oxygen vacancies at the surface of $SiO_2:Zn$ powders.
본 연구에서는 비정질 실리콘과 CuInSe2와 함께 지상용 태양전지재료로 널리 연구되고 있는 다결정 CdTe 박막의 열처리방법으로서 로열처리와 반도체 공정에서 사용되는 급속열처리 방법을 이용하여 이들 열처리의 효과를 분석함으로써 태양전지용 다결정 CdTeq 박막에 적합한 효율적인 열처리 방법에 대한 연구를 수행하였다. 증착 후 열처리조건에 따른 결정구조, 결정립 크기, 표면과 박막내부의 성분, 밴드갭 에너지값, 그리고 전기비저항 등을 측정하여 태양전지용 CdTe 박막의 물리적.전기적 특성에 미치는 열처리효과를 관찰하였다. 연구결과 30$0^{\circ}C$에서 증착하고 CdCI2 처리 후 $400^{\circ}C$ 30분간 로열처리를 한 경우, 그리고 $200^{\circ}C$에서 증착한 후 $500^{\circ}C$ 부근에서 1분간 급속열처리를 한 경우 다결정 CdTe 박막의 물리적 전기적 특성이 현저히 향상됨을 알 수 있었다. 특히 급속열처리를 한 경우 로열처리에 비해 결정립의 크기는 작으나 전기비저항이 낮고 밴드갭에너지가 단결정에 더욱 접근하며 태양전지용 다결정 CdTe 박막의 열처리 방법으로 적용할 가치가 있는 방법으로 사료된다.
The Journal of the Convergence on Culture Technology
/
v.4
no.4
/
pp.343-348
/
2018
Anthocyanin derivatives are an important of natural compounds responsible for the red, purple and blue colors in a large number of plants. This molecules are polymethoxy-derivatives of 2-phenylbenzopyrylium salts. Despite the beneficial properties of anthocyanins, the effectiveness of preventing or treating various diseases depends on bioavailability. Therefore, In this study, in order to investigate the electrical characteristics of anthocyanin derivatives, we investigated the electrochemical properties of derivatives by calculating the total energy, bandgap, net charge of anthocyanin derivatives using HyperChem8.0's PM3 method.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.91-91
/
2008
ZnO는 넓은 밴드갭(3.37eV)과 큰 엑시톤(exciton) 결합에너지(60meV) 를 가지는 II-VI족 산합물 반도체로, 상온에서도 높은 재결합 효율이 기대되는 엑시톤 전이가 가능하여 자발적인 발광특성 및 레이저 발진을 위한 낮은 임계전압을 보여주는 장점을 가지고 있다. 이러한 특성을 이용해, 최근 ZnO 박막을 이용한 LED 및 LD 소자 제작에 대한 연구가 국내외적으로 매우 활발하게 이루어지고 있다. 하지만 아직까지 p-type ZnO는 전기적 특성 및 재현성 문제를 극복하지 못하고 있기 때문에 ZnO를 이용한 동종접합구조를 이용한 소자제작은 어려움이 따른다. 이런 문제점을 극복하기 위해 최근 p-type 물질을 ZnO와 결정구조 및 특성이 거의 유사한 GaN를 많이 이용하고 있다. 또한 RF 스퍼터링법을 이용해 박막을 성장할 경우 성장조건 및 불순물 도핑 등에 따라 성장되는 n-type ZnO의 전기적 특성 및 밴드갭을 조절할 수 있다. 본 연구에서는 RF 스퍼터링법을 이용해 p-type GaN 기판위에 n-type ZnO를 성장한 이종접합구조를 이용해 발광 다이오드를 제작하고 그에 대한 특성 평가를 하였다. 이때 성장시킨 n-type ZnO는 여러 가지 성장 변수 및 불순물 도핑으로 전기전 특성 변화 및 밴드갭 조절을 통해 발광특성 변화에 대해 특성 평가를 하였다.
Kim, Myeong-Sang;Hwang, Jeong-U;Ji, Taek-Su;Sin, Jae-Cheol
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.323-323
/
2014
기존의 태양전지 기술은 기술 장벽이 매우 낮고 대량 생산을 통한 단가 절감하는 구조를 가지고 있어 대규모 자본을 가진 후발 기업에게 잠식되기 쉽다. 그러나, III-V족 화합물 반도체를 이용한 집광형 고효율 태양전지는 기술 장벽이 매우 높은 기술 집약 산업이므로 독자적인 기술을 확보하게 되면 독점적인 시장을 확보 할 수 있어 미래 고부가 가치 산업으로 적합하다. 특히 III-V족 화합물 반도체 태양전지는 III족 원소(In, Ga, Al)와 V족 원소(As, P)의 조합으로 0.3 eV~2.5 eV까지 밴드갭을 가지는 다양한 박막 제조가 가능하여 다양한 흡수 대역을 가지는 태양전지 제조가 가능하기 때문에 다중 접합 태양전지 제작이 가능하다. 또한 III-V 화합물 반도체는 고온 특성이 우수하여 온도 안정성 및 신뢰성이 우수하고, 또한 집광 시 효율이 상승하는 특성이 있어 고배율 집광형 태양광 발전 시스템에 가장 적합하다. Si 태양전지의 경우 100배 이하의 집광에서 사용하나, III-V 화합물 반도체 태양전지의 경우 500~1000배 정도의 고집광이 가능하다. 이러한 특성으로 III-V 화합물 반도체 태양전지 모듈 가격을 낮출 수 있고, 따라서 Si 태양전지 시스템과 비교하여 발전 단가 면에서 경쟁력을 확보할 수 있다. III-V 화합물 반도체는 다양한 밴드갭 에너지를 가지는 박막 제조가 용이하고, 직접천이(direct bandgap) 구조를 가지고 있어 실리콘에 비해 광 흡수율이 높다. 또한 터널정션(tunnel junction)을 이용하면 광학적 손실과 전기적 소실을 최소화 하면서 다양한 밴드갭을 가지는 태양전지를 직렬 연결이 가능하여 한 번의 박막 증착 공정으로 넓은 흡수대역을 가지며 효율이 높은 다중접합 태양전지 제작이 가능하다. 이에 걸맞게 본연구에서는 화학기상증착장치(MOCVD)를 이용하여 InAsP 나노선을 코어 쉘 구조로 성장하여 태양전지를 제작하였다. P-type Dopant로는 Disilane (Si2H6)을 전구체로 사용하였다. 또한 Benzocyclobutene (BCB) 폴리머를 이용하여 Dielectric을 형성하였고 Sputtering 방법으로 증착한 ZnO을 투명 전극으로 사용하여 나노선 끝부분과 실리콘 기판에 메탈 전극을 형성하였다. 이를 통해 제작한 태양전지는 솔라시뮬레이터로 측정했을때 최고 7%에 달하는 변환효율을 나타내었다.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.334.2-334.2
/
2014
본 연구에서는 a-InGaZnO (IGZO) 활성층에 대기분위기에서 열처리 온도를 각각 $150^{\circ}C$, $250^{\circ}C$, $350^{\circ}C$ 실시하여 전자구조와 광학적 특성분석 및 화학적 결합 상태의 변화를 알아보고, 이러한 물성 변화에 따른 소자의 특성을 알아 보았다. 박막 트랜지스터 소자의 전기적 특성은, IGZO 박막에 후 열처리 공정온도 후 제작한 박막 트랜지스터는 $150^{\circ}C$에서 3.1 cm2/Vs의 전계 효과 이동도와 0.38 V/decade의 문턱전압 이하 기울기를 보였으나, $350^{\circ}C$에서는 8.8 cm2/Vs의 전계 효과 이동도와 0.20 V/decade의 문턱전압 이하 기울기로 더 향상된 박막 트랜지스터의 전기적 특성 결과를 관측하였다. 전기적 소자 특성의 변화와 활성층 IGZO 박막 특성 변화와의 상관관계를 조사하기 위하여 X-ray Absorption Spectroscopy (XAS)과 Spectroscopy Ellipsometry (SE)로 측정된 흡수 스펙트럼을 통하여 3 eV 이상의 광학적 밴드 갭은 기존에 보고 되었던 a-IGZO와 유사한 특성을 보이고 있음을 확인하였고, 이러한 측정, 분석법들을 통해 후 열처리 공정 온도에 따른 밴드 갭 부근의 결함준위의 양 변화와 가전자대의 전자구조의 변화에 따라 전기적 특성이 달라짐을 확인 할 수 있었다. 또한, X-ray Photoemission Spectroscopy (XPS)를 통해 측정한 O-1s를 통해 Oxygen deficient state와 밴드 갭 부근의 결함준위와의 상관관계를 도출해낼 수 있었다. 이는 a-IGZO 활성층에 후 열처리 공정 온도 변화에 따라서 전자구조의 혼성변화와 밴드 갭 부근의 결함준위의 양의 변화, 에너지 준위의 변화 및 이와 연관된 화학적 상태 변화가 박막 트랜지스터의 특성 변화를 예상할 수 있다는 결과를 도출하였다.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.105-105
/
2012
본 논문에서는 전세계적으로 차세대 에너지절감 반도체로 각광을 받고 있는 GaN 소자의 연구개발 동향에 관하여 발표하고자 한다. GaN 반도체는 와이드 밴드갭(Eg=3.4eV)과 고온 안정성($700^{\circ}C$)등 재료적인 특징으로 인하여 고출력 RF 전력증폭기와 고전력용 전력반도체 응용에 큰 장점을 가진다. 고출력용 GaN RF 전력증폭 소자의 전력밀도는 기존 Si-기반 LDMOS 트랜지스터보다 10배 이상 높아 제품의 소형화와 경량화를 통하여 30% 이상의 전력절감이 가능하며, 레이더, 위성등 송수신 트랜시버 모듈에 GaN 전력증폭기를 이용할 경우 기존 GaAs-기반 전력증폭기에 비하여 높은 전력밀도(>x8)와 높은 효율(>20%)로 인하여 모듈 크기를 50% 이상 줄임과 동시에 경량화를 이룰 수 있어 비행기, 위성등 탑재체의 에너지 절감에 크게 기여할 수 있다. 고전력용 GaN 전력 스위칭 소자는 기존 Si-기반 IGBT에 비하여 스위칭 손실과 온-저항 손실이 낮아 30% 이상의 에너지 절감이 가능하다. 뿐만 아니라, 일본 도요타 자동차사의 보고에 의하면 HEV등 전기자동차의 DC-DC 부스터 컨버터나 DC-AC 인버터에 GaN 전력반도체를 적용할 경우 경량화, 변환효율 향상, 전용 냉각시스템을 제거할 수 있어 연료소모를 10% 이상 줄일 수 있어 연간 400불 이상의 에너지 절감 효과를 가진다. 이러한 에너지절감 효과는 미국, 유럽, 일본등 선진국을 중심으로 차세대 GaN 반도체의 신시장 개척과 선진입을 위한 치열한 경쟁 구도의 구동력이 될 것이며, 본 논문을 통하여 GaN 반도체의 연구개발 방향과 상용화의 중요성을 함께 생각해보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.