• 제목/요약/키워드: 백 프로퍼게이션

검색결과 16건 처리시간 0.02초

대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용 (Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu)

  • 임성빈;김교원;서용석
    • 지질공학
    • /
    • 제15권1호
    • /
    • pp.67-76
    • /
    • 2005
  • 암석의 물리적 특성과 슈미트반발경도 결과로부터 일축압축강도를 예측하기 위한 인공신경망 이론의 적용과 최적 모델 구성에 대하여 연구하였다. 대구지 역의 퇴적암(사암, 셰일) 시료 55개가 사용되었으며, 이들 중 인공신경망 학습을 위하여 45개가 사용되었고 학습결과의 검증을 위하여 10개의 시료가 이용되었다. 인공신경망에 의한 추산 결과와 비교하기 위하여 통계적 방법을 통한 회귀분석을 통하여 역학특성의 상관식을 도출하였으며, 인공신경망의 유효성 검증을 위하여 모델 구축 시 에 사용하지 않은 새로운 자료에 대해 예측을 실시하고 통계적 방법에 의한 결과 및 실내 시험 결과와 비교하였다. 본 연구에 사용한 인공신경망모델에는 백프로퍼게이션 학습 알고리즘(back-propagation teaming algorithm)이 적용되었으며, 인공신경망의 학습효율 및 예측능력에 영향을 미치는 입ㆍ출력층 및 은닉층의 구조, 학습율, 시스템오차율 등을 달리 하며 학습을 시행하였다. 그 결과 통계적 분석보다는 인공신경망의 학습에 의한 예측결과가 더 나은 예측능력을 나타냈다.

인공신경망을 이용한 소프트웨어 개발공수 예측모델에 관한 연구 (Using Artificial Neural Network for Software Development Efforts Estimation on)

  • 전응섭
    • 한국정보처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.211-224
    • /
    • 1996
  • 소프트웨어 개발공수(Efforts)에 관한 연구는 그 동안 상당히 많이 이루어져 있으나, 대부분 기존의 알고리즘 모델과 통계적 접근방법에 의한 모델에 한정 되어 있다고 할 수 있다. 또한 이들 연구는주로 외국의 사례를 대상으로 한 것이어서 국내의 소프트웨어 개발 환경에 적용하기에는 예측력과 적응도 등의 여러 문제가 제기되고 있다. 따라서 본 논문에서는 보다 현실적이고 실용적인 소프트웨어 개발공수의 예측모델로서 백프로 퍼게이션 알고리즘을 이용한 신경망 예측모델을 제시하고, 이 모델의 예측결과와 기존 의 모델인 COCOMO 그리고 희귀분석에 의한 예측결과들을 통계적으로 비교 분석하여 신경회로망의 우수한 예측력을 검증하였다. 이러한 분석의 결과를 토대로 보다 예측력 이 놓고 사용자가 쉽게 모델링하여 사용할 수 있는 정교한 신경망 모델을 제시하고자 한 다.

  • PDF

신경망 학습 코드에 따른 오프라인 필기체 한글 인식률 비교 (Comparisons of Recognition Rates for the Off-line Handwritten Hangul using Learning Codes based on Neural Network)

  • 김미영;조용범
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.150-159
    • /
    • 1998
  • 본 논문은 필기체 한글의 특징을 추출한 후 이를 신경망을 이용하여 인식하였다. 한글의 특징 추출을 위해 $5{\times}5$ 윈도우 방법을 사용하였는데, 이는 $3{\times}3$ 윈도우 방법을 수정한 것이다. 추출된 특징을 이진화 코드로 변환하여 신경망의 입력으로 사용하며, 백프로퍼게이션 알고리즘으로 학습시켰다. 수직 모음, 수평모음, 자음 인식을 위한 3개의 신경망을 각각 구성하였고, 결과를 비교하기 위하여 3가지 학습 방법을 사용하였다. 3가지 학습 방법은 고정 코드 방법, 학습 코드 방법 I, 학습 코드 방법 II이고 학습 코드 방법 II가 가장 좋은 결과를 보였다. 이 경우 수직 모음과 수평 모음은 100%의 인식률을, 자음은 93.75%의 인식 결과를 보였다.

  • PDF

은닉노드의 특징 값을 기반으로 한 최적신경망 구조의 BPN성능분석 (Performance Analysis of Optimal Neural Network structural BPN based on character value of Hidden node)

  • 강경아;이기준;정채영
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.30-36
    • /
    • 2000
  • 은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.

  • PDF

초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가 (Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network)

  • 최상우;이준현
    • 비파괴검사학회지
    • /
    • 제21권4호
    • /
    • pp.398-405
    • /
    • 2001
  • 리벳이음은 응력집중 등에 의한 피로균열 발생 가능성이 높은 구조특성을 가지므로 구조물의 안전성 확보를 위하여 비파괴 평가 방법에 의하여 리벳홀 주위 균열에 대한 평가가 요구되고 있다. 유도 초음파의 일종인 Lamb파는 판형상의 구조물의 비파괴 평가에 적합하며, 신경회로망은 비파괴 평가 기술에서 결합의 크기 및 종류 인식에 관하여 가장 효율적인 기법으로 많은 연구자들에 의해 적용되어 왔다. 본 연구에서는 항공기의 스킨재료로 적용되는 A12024-T3판재에 대하여 유도초음파의 일종인 판파를 적용하여 리벳홀 주위 균열 신호를 검출하였으며, 또한 리벳홀 주위 균열의 크기 평가를 위하여 백프로퍼게이션 알고리즘을 적용한 신경회로망을 적용하였다. 이때, 초음파 트랜스듀서와 시험편 사이의 불균일 접촉에 의한 오차를 줄이기 위하여 초음파 파형에서 시간 및 주파수 성분의 특성을 추출하여 신경회로망에 적용하였다. 그리고 이들 판파신호에서 추출한 시간 및 주파수 성분의 특성은 균열 크기 결정에 유용하게 적용될 수 있음을 증명하였다.

  • PDF

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.