백색 유기발광소자는 전색 디스플레이나 조명용 광원으로 쓰일 수 있기 때문에 많은 연구가 진행되고 있다. 백색 유기발광소자를 제작하기 위해서는 보통 청색, 녹색 및 적색을 가지는 발광층을 적층하거나 세 가지 색을 가지는 혼합하여 단일 발광층으로 제작할 수 있으나 구조가 복잡해지고 제작이 어려워지는 단점이 있다. 본 연구에서는 sol-gel 방법으로 제작된 무기물 형광체를 색변환 층으로 사용하였고, 청색 유기발광소자를 광원으로 하여 백색 유기발광소자를 제작하였다. 청색 유기 물질을 발광층으로 사용하여 제작한 청색 유기발광소자를 광원으로 사용하였고 다른 온도에서 소결된 무기물 형광체를 색변환층으로 사용하여 백색 유기발광소자를 제작하여 발광 특성을 관찰하였다. 다른 소결 온도에서 형성된 무기물 형광체의 주사 전자현미경 측정과 X-선 회절 층정을 통해서 무기물 형광체의 형성 및 표면 형태를 관찰하였다. 제작한 무기 형광체를 색변환층으로 사용하여 백색 유기발광소자를 제작하였고, 인가한 전압에 따른 전계발광 특성 변화를 통해서 색변환 메커니즘을 규명하였다.
백색 유기발광소자는 빠른 응답속도, 높은 색재현율 및 높은 색안정성의 특성으로 차세대 친환경 백색 광원으로 많은 주목을 받고 있다. 유기발광소자와 양자점을 혼합하여 사용한 백색 유기발광소자는 양자점의 높은 색순도와 고효율의 장점을 가지고 있기 때문에 연구가 활발하게 진행되고 있다. 녹색 및 적색 양자점을 색변환층으로 이용한 백색 유기발광소자는 두 양자점의 혼합 비율에 따라 연색성 및 색안정성이 변화하기 때문에 이에 관련 된 연구가 필요하다. 본 연구에서는 높은 색안정성을 가지는 백색 유기발광소자를 제작하기 위해 청색 유기발광소자 위에 용액 공정으로 녹색 및 적색 빛을 방출하는 CdSe/ZnS 양자점을 포함하는 색변환층을 도포했다. 녹색 및 적색 양자점은 250 nm부터 500 nm의 넓은 광 흡수대역을 가지고 있기 때문에 465 nm의 청색 발광소자의 빛을 흡수하여 각각 적색과 녹색 발광을 할 수 있다. 녹색 및 적색 양자점의 혼합 비율에 따른 광발광 스펙트럼 측정 결과를 통해 녹색 및 적색 양자점의 최적 혼합 비율이 7:3임을 확인하였다. 최적의 혼합 비율을 사용하여 제작 된 백색 유기발광소자의 전기적 및 광학적 특성을 전류-전압 측정과 전계발광 측정으로 비교 분석하였다. 9 V에서 14 V로 전압이 변화하는 동안 백색 유기발광소자의 색좌표의 변화는 (0.35, 0.33)에서 (0.35, 0.32)로 높은 색안정성을 나타냈다. 본 연구 결과는 유기발광소자와 양자점을 혼합하여 사용한 백색 유기발광소자의 높은 색안정성에 대한 기초자료로 활용할 수 있다.
유기발광소자는 고휘도, 넓은 시야각, 빠른 응답속도, 높은 색재현성, 좋은 유연성의 소자 특성 때문에 디스플레이 제품에 많이 응용되고 연구가 활발하게 진행되고 있다. 최근에 저소비전력, 고휘도, 소형화 및 장수명의 장점을 가진 유기발광소자의 상용화가 진행되면서 차세대 디스플레이소자로서 관심을 끌게 되었다. 최근에는 고효율의 장점을 가지는 무기 형광체와 양자점을 이용한 백색 유기발광 소자에 대한 연구가 활발하게 진행되고 있으나 색 안정성이 좋지 않은 문제점이 있다. 본 연구에서는 적색 빛을 방출하는 CdSe/ZnS 양자점과 녹색 빛을 방출하는 YAG:Ce3+ 무기 형광체를 포함하는 polymethylmethacrylate (PMMA)를 색변환층으로 이용하여 청색 유기발광소자에 결합한 백색 유기발광소자를 제작하였다. CdSe/ZnS 양자점과 YAG:Ce3+ 무기 형광체의 광흡수대역은 250 nm에서 500 nm이므로 470 nm의 청색 발광소자의 청색 빛을 흡수하여 색변환층에서 재 발광할 때 색 변환 결과를 무기 형광체와 양자점의 여러 가지 혼합 비율에 따라 전계발광 스펙트럼을 통해 관측하였다. 또한, 전압을 12 V 에서 16 V까지 변화하였을 때 색좌표가 (0.32, 0.34)에서 (0.30, 0.33)으로 적은 변화를 보여 높은 색안정성을 확인 할 수 있었다. 이 연구 결과는 양자점과 무기 형광체를 혼합한 색변환층을 이용한 백색 유기발광소자의 색 변환 효율 증가와 색안정성에 대한 기초자료로 활용할 수 있다.
유기발광소자는 빠른 응답속도, 고휘도 및 면발광의 장점을 가지고 있어서 차세대 디스플레이와 조명시장에서 주목을 받고 있다. 그 중 백색유기발광소자는 차세대 조명과 디스플레이의 백라이트로서 많은 연구가 진행되고 있으며, 다른 디스플레이에 비해서 많은 장점을 가지고 있다. 그러나 백색유기발광소자의 경우 복잡한 구조에 의한 공정비용의 증가, 낮은 효율 및 색안정성과 같은 문제점이 있다. 본 연구에서는 청색 인광 물질을 사용하여 고효율의 청색 유기발광소자를 제작하였으며, 졸-겔 방법으로 제작된 Mn 도핑된 $Zn_2SiO_4$ 녹색 무기물 형광체와 Mn 도핑된 $CaAl_{12}O_{19}$ 적색 무기물 형광체를 제작된 청색 유기발광소자에 도포하여 백색 발광소자를 제작하였다. Mn 도핑된 $Zn_2SiO_4$와 Mn 도핑된 $CaAl_{12}O_{19}$ 무기물 형광체층은 청색 유기발광소자에서 발생하는 빛을 흡수하여 적색과 녹색의 빛으로 변환하기 때문에 백색 구현에 필요한 청색, 녹색, 적색의 빛을 모두 얻을 수 있다. 녹색과 적색의 무기물 형광체의 두께와 결정크기에 따른 광학적 특성 변화를 조사하여 최적의 백색 발광소자를 제작하였다. 주사전자현미경을 통해 무기물 형광체의 결정크기를 조사하였으며, 전압-휘도 특성으로 광학적 특성을 조사한 결과 제작한 백색 발광소자의 색좌표가 순백색에 가까운 값을 나타내었다. 색변환층으로 사용한 무기물 형광체의 구조적 및 광학적 성질에 대한 결과를 바탕으로 백색 유기발광소자의 발광메커니즘을 설명하였다.
본 논문에서는 유색잡음에 의해 오염된 음성신호의 음성향상 알고리즘을 제안한다. 유색잡음과 음성신호가 서로 상관이 없을 경우 유색잡음은 백색화 변환을 통해 무색잡음으로 변환된다. 이 변환된 신호를 음성신호 향상을 위한 일반화된 부공간 접근법에 적용한다. 전처리 과정에서의 백색화 변환으로 발생되는 음성 스펙트럼 왜곡은 제안한 알고리즘의 후처리를 통해 역 백색화하여 복구한다. 제안한 알고리즘의 성능을 컴퓨터 시뮬레이션으로 확인하였다. 사용한 유색잡음은 자동차 잡음과 멀티 토커 배블 잡음이다. AURORA 및 TIMIT 데이터 베이스에서 취득한 데이터로 실험했을 때 제안하는 방법이 신호대잡음비 및 스펙트럼 왜곡 측면에서 기존 접근법보다 개선됨을 확인하였다.
백색 유기발광소자는 전색 디스플레이, 조명으로서의 잠재적인 특성으로 차세대 디스플레이 소자 기술로 많은 주목을 받고 있다. 백색 유기발광소자는 주로 R-G-B 영역의 다양한 발광층을 적층하여 제작한다. 하지만 여러 발광층을 적층해야하기 때문에 제작할 때 공정 과정이 복잡해지고, 높은 생산단가를 가지게 된다. 이런 문제를 해결하기 위해 형광체를 이용한 백색 유기발광소자의 연구가 진행되고 있지만, 아직 색순도와 색좌표에 대한 많은 연구가 미흡한 상태이다. 본 연구에서는 무기물 형광체를 활용하여 백색 유기발광소자의 전기적 특성과 광학적 특성을 관찰하였고, 광원으로 사용된 청색 유기발광소자에 녹색과 적색의 무기물 형광체를 결합하는 방법으로 백색 유기발광소자를 제작하였다. 광원으로 사용한 청색 유기발광 소자는 투명전극으로 ITO를 사용하였고, 정공 수송층으로 N,N'-bis-(1-naphthyl)-N,N'-diphenylbenzidine, 발광층으로 4,4-bis(2,2-diphenylethen-1-yl)biphenyl, 정공 저지 층과 전자 수송 층은 각각 bathocuproine 과 4,7-diphenyl-1,10-phenanthroline 을 사용 하였다. 전자 주입 층으로는 lithium quinolate를 사용하였으며 음극으로는 Al을 사용하였다. 색 변환 층으로 사용된 유기물 형광체는 sol-gel 방법으로 제작된 녹색 형광체 Y3Al5O12:Ce, 적색 형광체 Ca2AiO19:Mn 을 사용하였다. Sol-gel 방법으로 제작된 형광체는 X선 회절 분석기를 통해 JCPDS cards를 확인하였고, 형광체의 녹색과 적색의 혼합비율에 따른 색좌표를 확인하여 백색 유기발광소자를 제작 하였다.
백색 유기발광소자는 일반적으로 적색, 청색 및 녹색의 삼원색을 혼합하여 제작하거나 청색 유기발광소자의 빛을 일부 변환시켜 적색 혹은 녹색을 발생하여 백색을 발광하는 구조를 가진다. 백색을 구현하기 위한 삼원색 조합법은 소자의 구조가 복잡하고 제조단가가 상승하며 제작 된 백색 유기 발광 소자내의 발광 영역을 담당하는 물질의 빠른 열화 때문에 발광 스펙드럼에 변화가 생길 수 있다. 본 연구에서 제안하는 색변환 방법은 최적화된 청색 유기발광소자에서 발광된 빛을 색변환 무기물 형광체 층에 의해 재흡수하고 재발광하는 과정에 의해 빛이 발생되기 때문에 색변환 무기물 형광체 층을 사용한 유기발광소자는 구조가 단순하며 무기물 형광체가 외부노출에 안정하기 때문에 상대적으로 안정된 동작이 가능하다. 청색 유기 발광 소자의 효율이나 휘도를 개선하면 소자의 성능이 향상될 수 있는 구조적 장점이 있다. 그러나 기존에 일반적으로 제조하던 방법인 고상반응법에 의한 형광체입자의 크기는 ${\mu}m$ 이상이며 형태도 불규칙한 단점이 있다. 본 연구에서는 졸겔방법으로 녹색 무기물 형광체 $Zn_2SiO_4:Mn$를 제작하였고 청색 형광 유기 발광 소자에 적용하였다. X-선 회절측정 결과는 형성된 녹색 무기물 형광체내의 Zn 이온이 도핑된 Mn 이온에 대체되었음을 보여주었다. 제작된 진청색 형광 OLED의 전계발광 스펙트럼은 461nm에서 발광 스펙트럼을 나태내고 녹색 무기물 형광체는 470 nm에서 여기되어 Mn 이온의 $^4T_1-^6A_1$ 전이에 의하여 526 nm에서 발광을 한다. 이 과정에서 색변환층의 두께가 0.3 mm 이상일 때 461 nm의 발광스펙트럼의 세기가 급격히 줄어들었다. 이 결과는 제작된 녹색 무기물 형광체를 진청색 유기발광소자와 결합하고 색변환층의 두께를 변화하여 제작된 유기발광소자의 발광색을 조절할 수 있음을 보여주었다.
본 논문에서는 오차역전파알고리즘에 의한 신경회로망을 사용하여 이산푸리에변환에 의한 진폭성분과 위상 성분을 복원하는 음성강조 시스템을 제안한다. 먼저, 신경회로망이 잡음이 부가된 음성신호의 이산푸리에변환의 진폭성분과 위상성분을 사용하여 학습된 후, 제안한 시스템은 백색잡음에 의하여 열화된 잡음이 부가된 음성 신호를 강조한다. 백색잡음에 의하여 열화된 음성신호는 이산푸리에변환에 의한 진폭성분과 위상성분을 입력으로 하는 신경회로망을 사용하여 제안된 시스템에 의하여 강조되는 것을 실험결과로 증명한다. 제안한 시스템은 스펙트럼 왜곡율의 평가법을 사용하여 백색잡음에 의하여 열화된 음성신호에 대하여 효과적인 것을 실험으로 확인한다.
유기 발광 소자는 전색 디스플레이, 액정디스플레이의 백라이트유닛 및 조명으로의 사용가능성 때문에 많은 관심을 받아 왔고 지속적으로 발전하여 디스플레이 뿐 아니라 조명 시장에서 관심을 갖게 되었다. 그러나 유기 발광 소자의 효율은 무기 발광 소자의 효율보다 낮고 제작하는 데 고비용을 요하기 때문에 조명시장으로의 원활한 진입을 위해서는 지속적인 연구가 필요적이다. 발광층에 삼원색을 혼합하여 백색 유기 발광 소자를 제작하는 방법은 그 제조 공정이 복잡하고 공정 단가가 크게 상승할 우려가 있고 발광 물질의 수명을 동시에 고려해주어야 하는 문제점이 있다. 이 문제를 해결하기 위하여 청색 유기 발광 소자를 제작하고 색변환층으로 적색 형광체를 사용하면 그 단순한 구조에 기인한 간단한 공정으로 인해 가격과 소자성능의 안정성을 가지는 장점을 가질 수 있다. 색변환층의 두께를 통해 유기 발광 소자의 발광 스펙트럼을 아주 용이하게 조절할 수 있어 높은 연색지수를 갖는 백색 발광 유기 소자의 제작이 가능하여 조명으로의 적용 가능성이 아주 크다. 이를 바탕으로 높은 휘도를 갖는 청색 유기 발광 소자의 유리 기판 반대편에 적색 형광체층을 두께별로 도포하여 백색 유기 발광 소자를 제작하였다. 색변환층으로 사용될 적색 형광체는 $CaAl_{12}O_{19}:Mn^{4+}$ 화합물로써 졸-겔 방법을 사용하여 제작하였다. 제작한 $CaAl_{12}O_{19}:Mn^{4+}$ 화합물에 대한 X 선 회절 패턴은 형성된 형광체의 구조임을 알 수 있었다. 각기 다른 형광체의 도포 조건에 따른 구조적 성질과 색변환 효율의 변화를 알아보기 위해 주사전자 현미경 측정으로 확인하였다. 제작된 적색 형광체와 청색 유기 발광 소자는 광루미네센스 스펙트럼과 전계 발광루미네센스 스펙트럼 결과를 사용하여 발광 메커니즘을 분석하였다.
백색 OLED 조명 분야에서 색 변환은 큰 이슈가 되고 있다. 하지만 청색 유기물의 발광 특성이 좋지 못하여 아직까지 정착이 되지 못하고 있는 것이 현실이다. 본 연구에서는 발광 효율이 낮은 청색 OLED 대신 청색 LED와 황색 OLED를 사용하여 색 변환을 통한 백색 발광 panel을 제조하고 전기 및 광학적 특성을 평가하였다. 먼저 OLED소자는 진공증착방법을 사용하여 ITO (150 nm)/KHI-001 (5 nm)/LG-101 (10 nm)/KHT-001 (25 nm)/ PGH-02 (25 nm): Ir (mpp) 3 (8%): PRD-003 (0.3%)/TMM-004 (10 nm)/LG-201 (20 nm): LiQ (50%)/Al (150 nm) 구조를 갖는 발광면적 $70{\times}70mm^2$의 황색 OLED panel을 제작하였다. CIE 1931색좌표는(0.49, 0.49)이고, 효율은 $41.61{\ell}m/W$이다. 그리고 LED는 청색 칩을 한 줄로 나열하여 LED bar를 만들었고 여기에 도광판, 리버스 프리즘시트, 확산시트 그리고 반사시트를 더하여 점광원을 면광원화 하였다. CIE 1931색좌표가 (0.15, 0.04)이며 효율은 $3.56{\ell}m/W$이다. 황색 OLED를 청색 LED 면광원 뒤에 붙여서 두 빛이 도광판 위쪽으로 나오게 하였다. 이렇게 hybrid된 빛은 인가 전류를 변화 시킴으로써 색온도 3,200 K의 warm white에서 7,800 K의 cool white까지 변환이 가능하였다. 그리고 순백의 hybrid 빛을 얻을 수 있었는데 이때의 색온도는 4200K이고 CIE 1931색좌표는(0.34, 0.33)이며 연색지수는 89였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.