• Title/Summary/Keyword: 백래시

Search Result 29, Processing Time 0.03 seconds

Torque Disturbance Analysis of Missile Hatch System by Spline Backlash (스플라인 백래시에 의한 유도탄 해치시스템의 토크 외란 분석)

  • Byun, Young Chul;Kang, E Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • This paper presents the experimental torque disturbance analysis of a missile hatch system by spline backlash. The missile hatch system uses a spline and gear train for vertical elevation of the heavy hatch. The spline used for the rotation shaft of the hatch is generally used for automotive driving parts that transmit high amounts of power. It has an angular backlash, which results in jerks. Backlash of the hatch spline influences hatch swinging. The spline backlash and hatch swing are experimentally analyzed by measuring the hatch's rotation angle and acceleration. Hatch swing is visually observable for a short period, and it is measured by measuring the rotation angle variation and hatch acceleration. The shape of fluctuation and duration time of hatch angle variation are similar to those of torque. This shows that the hatch swing due to spline backlash generates torque disturbances.

The Utilization of Frequency Response Characteristic for the Detection of Change of Backlash Magnitude (백래시 크기 변화 감지를 위한 주파수응답특성의 활용)

  • Baek, Joo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.45-54
    • /
    • 2015
  • This paper presents the influence of backlash can be greatly increased on the frequency response characteristic which is presented as the angular velocity of a motor to the motor input voltage, if the motor input voltage is adequately reduced. And, this paper verifies theoretically, analytically and experimentally the availability on the method of detecting the change of backlash magnitude by investigating on the change of the anti-resonance and resonance frequencies in the frequency response characteristic due to the change of backlash magnitude. The amount of change of anti-resonance frequency is more useful that of resonance frequency when detecting the change of backlash magnitude, because the change of anti-resonance frequency can be measured more stable. This paper also shows the sharp change of resonance frequency can be investigated when the motor input voltage is enough reduced. The work will be useful for the further research on the backlash estimation method of a servo system with a gear reducer.

A Study on Vibration Characteristics Caused by Backlash of Gearbox in Escalator with Chain-sprocket Drive Mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • 권이석;홍성욱;박노길
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.341-347
    • /
    • 2003
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash on gearbox as well as sag of driving Chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed. numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

A study on vibration characteristics caused by backlash of gearbox in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed, numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

  • PDF

A study on vibration characteristics caused by backlash of gear-box in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.329.2-329
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. (omitted)

  • PDF

Low Torque High Precision Automatic Backlash Measuring System for Aircraft Machine Gun Control Reducer (항공 기관총 구동제어 감속기용 저토크 고정밀 자동 백래시 측정장치 개발)

  • Park, Taehyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.34-42
    • /
    • 2022
  • Minimizing the backlash of gears and reducers is important for their proper and precise functioning. In this study, an automatic backlash measuring system was developed for the mass production and quality control of a military-grade reducer. The developed automatic backlash measurement system eliminates human error during the backlash measurement process. It also reduces the manufacturing time and digitizes the backlash number. The system was tested for an aircraft machine gun control reducer that required low-torque and high-precision conditions. The test results show that the torque range was 0.820-4.788 Nm. The maximum torque error is less than 0.231 N·m at 2.943 N·m, and 1.2 arcmin of the maximum backlash error with ± 0.3 arcmin of repeatability. The developed system satisfies all required conditions: torque of 1-3 Nm, torque accuracy within ± 0.5 N·m, and backlash accuracy of ± 3 arcmin.