• Title/Summary/Keyword: 배합 인자

Search Result 130, Processing Time 0.029 seconds

Physical and Chemical Properties of Charcoal Added Paper for Cigarette Filter (활성탄 첨가에 따른 담배용 필터지의 이화학적 특성)

  • Lee, Mun-Yong;Jeon, Yang;Kim, Yeong-Ho;Lee, Jong-Il
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.77-77
    • /
    • 1999
  • 담배용 필터에 사용되고 있는 재료는 아세테이트, 종이, 폴리프로펼렌, 부직포등이 주로 이용되고 있으 며 담배연기의 흡착능을 향상시키기 위한 방법으로 활성탄 제오라이트와 같은 흡착제를 담배필터에 첨가하여 사용하고 있다. 본 실험에서는 펼터에 가장 보편적으로 많이 사용하고 있는 활성탄을 종이 제조과정에 첨가하여 나타나는 물리적 특성을 관찰하였고 제조된 종이를 담배필터에 적용하기 위하여 현행 습식 크림핑(crimping)방법과는 달리 건식 크림핑(crimping)방법을 이용한 적합한 조건을 검토하 였으며 이에 따른 담배필터에서의 연기흡착능을 분석한 결과는 다음과 같다. 1. 시트의 물리적 특성과 담배 연기성분 홉착능을 예측하기 위하여 펄프의 불성과 uv 홉착능을 분 석한 결과 Sw-BKP가 Hw-BKP에 비하여 강도적 성질이 우수하였고 또한 메틸렌불루(methylene b blue) 흡착능도 높은 경 향을 나타내 었다. 2. 활성탄 함량의 증가에 따라 섬유간의 결합력이 약화됨에 따라서 시트의 인장강도 및 파열강도가 감 소하는 경향이 가장 크게 나타났으며 평량이 펼프 배합비보다 높은 인자로 작용하였다. 또한 인자 간의 교호작용에서는 평량과 활성탄 함량에 따라서 크게 나타났으며 평량, Sw-BKP의 함량이 증가할 수록 인장강도는 증가하였다. 3. Stiffness는 활성탄 함량 펄프 배합비 평량의 순에따라 중요한 인자로 작용하였고 활성탄 함량 이 많을수록 stiffness는 감소하였으며 평 량 Sw-BKP의 함량이 높을수록 증가하였다 인자간의 교 호작용은 평량과 활성탄 함량이 다른 요인에 비하여 높은 경향을 보였다. 4. 인열강도는 활성탄 함량이 증가함에 따라 가장 크게 감소하였고 시트의 평량이 펄프 배합비보다 높은 인자로 작용하였으며 평 량 Sw-BKP의 함량이 높을수록 증가하였다 인자간의 교호작용에서는 펄프 배합비와 활성탄 함량에 따라 크게 나타났다. 5. 종이 필터지에서 시트의 평량이 bulk에 가장 큰 인자로 작용하였는데 이는 같은 두께에서 평량올 변화시킨 요인으로 판단되며 시트의 평량이 높을수록 감소하였고 활성탄 함량, Sw-BKP의 배합비 가 높을수록 증가하였다. 또한, 인자간의 교호작용은 평 량과 활성 탄 함량에 따라 크게 작용하였다. 6 6. Crimp index는 관능검사 결과로서 활성탄 함량이 증가함에 따라 현저하게 저하되었으며 평량 및 S Sw-BKP의 배합비가 높을수록 양호한 결과를 나타내었다. 인자간의 교호작용에서는 평량과 펄프 배합비에 따라 가장 높은 경향을 나타내었다. 7 활성탄을 첨가하여 제조한 종이필터의 담배 연기성분 흡착능은 acetate tow에 charcoal을 첨가한 필터에 비하여 tar흡착능이 6% 이상 향상되었고, 특히 증기상 물질(vapour phase)중 aldehyde류에 대한 제거율(removal efficiency)이 높게 나타났다. 8. 건식 크림핑 방법에 의한 담배필터 제조시 펼프의 홉착능, 시트의 강도적 특성, 크림핑 조건 및 담 배 연기성분 흡착능 등을 고려하여 적정조건을 선정하였으며, 펄프 배합비(Sw-BKP따w-BKP)는 6 65/35, 시트의 평량은 40g/$m^2$ 활성탄 함량은 10% 이었다.

  • PDF

고무배합상(配合上)의 기본자세(基本姿勢) 및 지식(知識)

  • 편집부
    • Elastomers and Composites
    • /
    • v.11 no.2
    • /
    • pp.192-213
    • /
    • 1976
  • 지금(至今)까지 고무의 배합(配合)과 이의 조성(組成)에 대(對)하여 나타냈으며 배합성분(配合性分)에 영향(影響)을 주는 인자(因子), 즉(卽) 고무류(類), 고무 혼합물(混合物), 가황제(加黃劑)의 선택(選擇), 카아본 블랙의 종류(種類), 배합조제(配合助劑)나 extender의 효과(效果), 비흑색(非黑色) 충전제(充塡劑), 수지(樹脂) 그리고 지연제(遲延劑) 및 배합(配合)에 관계(關係)되는 사항(事項)을 논의(論議)하였다. 배합조건(配合條件)의 가장 중요(重要)한 것은 알맞은 고무의 선택(選擇)이며 다음으로는 가황제(加黃劑) 그리고 카아본 블랙의 순서(順序)로 되어 있다. 그 외(外)의 것도 중요(重要)한 역할(役割)을 하지만 상기(上記) 보다는 그렇게 핵의적(核心的)인 영향(影響)을 미치지는 않는다.

  • PDF

A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis (양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구)

  • Choi, Ju-Hee;Ko, Min-Sam;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.619-630
    • /
    • 2022
  • The concrete mix design and compressive strength evaluation are used as basic data for the durability of sustainable structures. However, the recent diversification of mixing factors has created difficulties in calculating the correct mixing factor or setting the reference value concrete mixing design. The purpose of this study is to design a predictive model of bidirectional analysis that calculates the mixing elements of ternary concrete using deep learning, one of the artificial intelligence techniques. For the DNN-based predictive model for calculating the concrete mixing factor, performance evaluation and comparison were performed using a total of 8 models with the number of layers and the number of hidden neurons as variables. The combination calculation result was output. As a result of the model's performance evaluation, an average error rate of about 1.423% for the concrete compressive strength factor was achieved. and an average MAPE error of 8.22% for the prediction of the ternary concrete mixing factor was satisfied. Through comparing the performance evaluation for each structure of the DNN model, the DNN5L-2048 model showed the highest performance for all compounding factors. Using the learned DNN model, the prediction of the ternary concrete formulation table with the required compressive strength of 30 and 50 MPa was carried out. The verification process through the expansion of the data set for learning and a comparison between the actual concrete mix table and the DNN model output concrete mix table is necessary.

Fire Resistance of High Strength Concrete Canonical Analysis Standard for Optimal Response Condition (고강도 콘크리트 내화성능 보강인자의 최적반응조건 도출을 위한 정준분석 모델 기준)

  • Kim, Young-Hun;Lee, Mun-Hwan;Lee, Sea-Hyun;Yu, Jong-Su;Jeong, Jun-Young;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.227-228
    • /
    • 2009
  • This study proceeded to find the optimum mixing rate of a high strength concrete with 80MPa of the contribution and composite effect on the resistance to fire of the fibers were analyzed and the corresponding results were exploited to derive practical mix proportions. Also proceeded to propriety examination of limit value for optimum operating condition.

  • PDF

집중탐구 - 체리벨리사 사료배합 및 제조

  • 한국오리협회
    • Monthly Duck's Village
    • /
    • s.159
    • /
    • pp.32-34
    • /
    • 2016
  • 체리벨리에서의 오리 사료 배합은 제한된 함량에서의 원재료들과 밀, 그리고 대두를 기반으로 한다. 주의해야 할 점은 영양성분으로 잘 알려진 원재료들이 항영양 인자로 작용하지 않도록 관리와 통제가 필요하다. 오리 생산에 특히 피해를 입히는 마이코톡신들에 대한 내성은 없다. 펠렛 형태의 모든 사료들은 높은 강도과 낮은 먼지 함량, 그리고 높은 생산성과 최고의 사료 효율을 유지하기 위해서 펠렛을 생산할 때 주의해야 한다.

  • PDF

Use of Neural Networks on Concrete Mix Design (콘크리트의 배합설계에 있어서 신경망의 이용)

  • 오주원;이종원;이인원
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • In concrete mix design we need the informations of the codes, the specifications, and the experiences of experts. However we can't consider all factors regarding concrete mix design. The final acceptance depends on concrete quality control test results. In this process we meet the uncertainties of materials. temperature, site environmental situations, personal skillfulness. and errors in calculations and testing process. Then the mix design adjustments must be made. Concrete mix design and adjustments arc somewhat complicated, time-consuming. and uncertain tasks. In this paper, as a tool to minimize the uncertainties and errors the neural network is applied to the concrete mix design. Input data to train and test the neural network are obtained numerically from the results of design following the concrete standard specifications of Korea. The 28-days compressive strengths which are variate according to the uncertainties and errors are considered. The results show that neural networks have a strong potential as a tool for concrete mix design.

Properties of Latex Modified Concrete by Binder Content and Effect on Chloride Ion Diffusion (라텍스 개질 콘크리트(LMC)의 결합재량에 따른 배합 및 염화물 이온 확산 특성)

  • Park, Sung-Gi;Won, Jong-Pil;Park, Chan-Gi;Lee, Sang-Woo;Sung, Sang-Kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.949-952
    • /
    • 2008
  • The latex modified concrete(LMC) was adds latex in the plain concrete as the latex has increase the durability of concrete. But it is added in LMC manufacture, which is a high price compares with different material and there is a weak point where the construction expense is very high. So, this study are decided mix proportion from the scope where the security strong point of LMC is possible and reduced the material expense by control the latex contents. and these mix proportions are estimated the chloride ion diffusion. The results of study appear that it can reduced the latex content until the $5{\sim}10$% of cements, and these mixtures are very low chloride ion diffusion.

  • PDF

Concrete Mixture Design for RC Structures under Carbonation - Application of Genetic Algorithm Technique to Mixture Conditions (탄산화에 노출된 콘크리트 구조물의 배합설계에 대한 연구 - 유전자 알고리즘 적용성 평가)

  • Lee, Sung-Chil;Maria, Q. Feng;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.335-343
    • /
    • 2010
  • Steel corrosion in reinforced concrete (RC) structures is a critical problem to structural safety and many researches are being actively conducted on developing methods to maintain the required performance of the RC structures during their intended service lives. In this study, concrete mixture proportioning technique through genetic algorithm (GA) for RC structures under carbonation, which is considered to be serious in underground site and big cities, is investigated. For this, mixture proportions and diffusion coefficients of $CO_2$ from the previous researches were analyzed and fitness function for $CO_2$ diffusion coefficient was derived through regression analysis. This function based on the 12 experimental results consisted of 5 variables including water-cement ratio (W/C), cement content, sand percentage, coarse aggregate content per unit volume of concrete in unit, and relative humidity. Through genetic algorithm (GA) technique, simulated mixture proportions were proposed for 3 cases of verification and they showed reasonable results with less than relative error of 10%. Finally, assuming intended service life, different exposure conditions, design parameters, intended $CO_2$ diffusion coefficients, and cement contents were determined and related mixture proportions were simulated. This proposed technique is capable of suggesting reasonable mix proportions and can be modified based on experimental data which consider various mixing components like mineral admixtures.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

A Study on the Estimation Method of Concrete Compressive Strength Based on Machine Learning Algorithm Considering Mixture Factor (배합 인자를 고려한 Machine Learning Algorithm 기반 콘크리트 압축강도 추정 기법에 관한 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.152-153
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, six influential factors (Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. After using algorithm of various methods of machine learning techniques, we selected the most suitable regression analysis model for estimating the compressive strength.

  • PDF