• Title/Summary/Keyword: 배출몰 농도

Search Result 10, Processing Time 0.022 seconds

Emission characteristics of diesel engine by mixing LPG (디젤기관의 LPG 혼합에 의한 오염배출물 저감특성)

  • 장영준;전충환;이춘우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

Analysis of respiration gas of a fertile chicken egg during incubation by gas mass spectrometer (기체질량분석기를 이용한 유정란 부화과정의 호흡량 분석)

  • Kim, Hyunjoo;Min, Deullae;Kim, Dalho;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.401-406
    • /
    • 2013
  • Oxygen($O_2$) consumption and carbon dioxide($CO_2$) excretion of a fertile chicken egg during incubation were measured by a gas mass spectrometer. A closed sample chamber was developed to collect gas samples during the 20 days of artificial incubation of both a fertile and an infertile egg. After leaving an egg in the sample chamber for an hour, using a gas-tight syringe, samples of 2 mL of gas were collected from the closed sample chamber and analyzed using a gas mass spectrometer in 2~4 day intervals. The $O_2$ consumption and $CO_2$ excretion of chicken embryos increased rapidly after 10 days from the starting point of incubation. After 20 days, 23 mL of $O_2$ was consumed and 16 mL of $CO_2$ was excreted per hour. Throughout the whole period of incubation, concentration of $O_2$ decreased 4.3 mol% and $CO_2$ increased only 3.1 mole%, i.e., the mole of consumed $O_2$ and the mole of excreted $CO_2$ were not the same. On the other hand, during the same period, concentration of $N_2$ increased about 1.3 mol% and the increased mole fraction of $N_2$ was comparable with the difference (1.2 mol%) between the mole fraction of consumed $O_2$ and excreted $CO_2$. Therefore, we can attribute the increase of $N_2$ mole% to the difference of mole fraction between consumed $O_2$ and excreted $CO_2$. In this study, through the analysis of gas, we could explain the respiration of a fertile chicken egg during incubation.

Desulfurization characteristics of domestic anthracite in a pressurized fluidized bed combustor (가압유동층연소로에서 국내무연탄의 탈황특성)

  • Han, Keun-Hee;Ryu, Ho-Jung;Shun, Do-Won;Yi, Chang-Keun;Ryu, Jung-In;Jin, Gyoung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.237-246
    • /
    • 2002
  • 가압유동층연소로(bed dia. 0.17m, freeboard dia. 0.25, total height 5m)에서 국내무연탄을 연소시켜 이에 대한 탈황특성을 고찰하였다. 실험은 압력($2{\sim}6atm$), 요동층온도(($850{\sim}950^{\circ}C$), 과잉공기(10, 20, 30,%)등의 조건과, 탈황을 위한 Ca/S몰비(($0.8{\sim}4.8$)가 탈황특성에 미치는 영향을 고찰하였다. 결과적으로, 본 연구의 실험범위에서 연소효율은 $80{\sim}99%$를 보였고, 연소온도, 압력 그리고 과잉공기가 증가 할수록 증가하였다. 배가스중의 $SO_2$배출농도는 압력, Ca/S몰비가 증가함에 따라 감소하였다. 탈황율은 상압에서 층(bed)온도의 증가에 따라 감소하였다. 운전압력이 증가함에 따라 탈황율의 감소폭이 둔화되었다. 과잉공기가 증가함에 따라 탈황율은 증가하는 경향을 나타냈다. 각각의 운전압력에서 과잉공기의 증가에 따라 약 10%의 증가폭을 보였다. 국내무연탄을 연소하는 경우 운전압력 4atm일 때 Ca/S몰비는 4이상 주입하여야 하고, 6atm일 때 Ca/S 몰비가 2.5이상주입하여야 150ppm이하를 보여 배출규제치를 만족하는 것을 보였다.

  • PDF

Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar (미분쇄 바텀애시 기반 지오폴리머 모르타르 특성에 관한 연구)

  • Lim, Gwi-Hwan;Lee, Jeong-Bae;Jeong, Hyun-Kyu;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.418-424
    • /
    • 2016
  • This study is an experimental study on the recycling of bottom ash in coal ash discharged from a thermal power plant. Bottom ash has limited research on recycling because it has more porous and higher water absorption ratio than fly ash. In this paper, the bottom ash was pulverized to a specific surface area of $4,000cm^2/g$ in order to use as a binder, and the flow, compressive strength test and microstructure analysis of the bottom ash based geopolymer mortar were performed. The flow measurement results of the geopolymer mortar showed that the flow rate was improved by increasing mixing water as the molar concentration of activator was increased. Compressive strength increased with increasing curing temperature and molar concentration. Through the microstructure analysis, we could confirm the geopolymer gel produced by the reaction of the condensation polymerization. It is considered that it is possible to make the bottom ash based geopolymer concrete through proper molar concentration of activator and high temperature curing.

Manufacturing of geopolymers for replacing autoclaved lightweight concrete panels (ALC 패널 대체용 지오폴리머의 제조)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Lightweight geopolymers were fabricated by using fused slag from integrated gasification combined cycle as a law material and Si sludge from silicon wafer process as a bloating material for the purpose of replacing autoclaved lightweight concrete (ALC). Density and compressive strength of geopolymers were measured and compared with the properties of ALC according to the variation of mol concentration of alkaline activator, W/S ratio, addition of fibers, and addition of polystyrene and the possibility of replacing ALC panel was estimated through the comparisons. Although the geopolymer satisfying the standard of ALC panel was not made by controlling mol concentration and W/S ratio, addition of inserts such as fibers and polystyrene insert was tried to overcome the obstacle of enhancing properties. Geopolymers cannot satisfying the standard of ALC panel by adding carbon or glass fibers; however, adding fibers can be suggested as one of the methods enhancing compressive strength because the compressive strength of the specimen containing 0.3 wt.% glass fibers was increased by 3 times. The maximum addition of polystyrene insert was turned out to be 50 vol.% and the properties of geopolymers varied by the method of insertion. When using single polystyrene insert, compressive strength was 17.8 MPa and density was 0.996 g/㎤ which were similar values to the standard of ALC panel. If the difficulties of reproductivity of production and insertion method of inserts were overcome through the future research, the geopolymers containing polystyrene inserts could possibly replace ALC panel.

Effects of CO Addition on Soot Formation in the Well Stirred Reactor (WSR에서 매연 생성에 관한 CO 첨가 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • Numerical investigation was performed to study on the soot formation characteristics in the WSR according to the CO addition. Ethylene and pure air were used as a fuel and an oxidizer, respectively, and three different equivalence ratios (2.0, 2.5, 3.0) were used in the calculation. The resulted CO mole fraction of 10 % CO addition showed the maximum value in spite of the least CO supply. This means that the conversion of CO to soot and other carbon compounds is weakened under incipient soot formation. The soot volume fraction was decreased with increasing the CO addition because the important species for soot formation such as pyrene and acetylene, were decreased with the addition of CO. When the equivalence ratio was 2.5, the soot volume fraction shows the highest value, which results from the contribution of fuel rich condition and reacting temperature. Furthermore, surface growth rate and species concentrations justified the HACA mechanism for soot formation.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

Characteristics of Satellite-Based CO/CO2, CO/NO2 Ratio in South Korea and China (한국과 중국의 도시별 위성기반 CO/CO2, CO/NO2 비율 특성)

  • Jieun Yu;Jaemin Kim;Jin Ah Jang;Jeong-Ah Yu;Seung-Yeon Kim;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.129-142
    • /
    • 2023
  • This study analyzed the ratio of carbon monoxide (CO) and carbon dioxide (CO2), CO and nitrogen dioxide (NO2) for cities and regionsin Korea and China using column-averaged carbon dioxide dry-air mole fraction (XCO2) of the Orbiting Carbon Observatory-2/3, CO and NO2 vertical column density (named XCO, XNO2 in thisstudy) of TROPOspheric monitoring instrument from April 2018 to April 2022, and presented the relationship between socioeconomic indicators (population, number of vehicles, Gross Regional Domestic Product) and ratio, and differences in characteristics between Korea and China. First, CO2 and CO were analyzed after calculating ΔXCO2 and ΔXCO removing the background value and trend line due to the difference in atmospheric residence time of three gaseous substances (CO2, CO, and NO2). Comparing the three values by regions, ΔXCO and ΔXCO2 were relatively higher in China and XNO2 were higher in Korea and the ratio of both values (ΔXCO/ΔXCO2, ΔXCO/XNO2) was higher in China than in Korea. ΔXCO/ΔXCO2, ΔXCO/XNO2 and socioeconomic indicators have a positive correlation suggesting that the concentration of air pollutants and greenhouse gases is higher as the city is large and the economic activity is active. Regarding the differences in the ratio characteristics of Korea and China, the relationship between ΔXCO and ΔXCO2 showed a negative correlation in Korea and a positive correlation in China. When the relationship between ΔXCO and XNO2 was examined for summer and winter, the change of ΔXCO by season was not significant in Korea, whereasthe change of ΔXCO and XNO2 by season waslarge in China resulting in the relationship between two countries appeared differently. These results suggest that seasonal variability and national emission characteristics should be considered in the process of analyzing the ratio of greenhouse gases to air pollutants.