• Title/Summary/Keyword: 배전설비

Search Result 608, Processing Time 0.02 seconds

A Proposal of the Prediction Method of Decentralized Power on Climatic Change (기후 변화에 따른 분산 전력 예측 방법 제안)

  • Kim, Jeong-Young;Kim, Bo-Min;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.942-945
    • /
    • 2010
  • The development of decentralized power has appeared as part of an effort to decrease the energy loss and the cost for electric power facilities through installing small renewable energy generation systems including solar and wind power generation. Recently a new era for decentralized power environment in building is coming in order to handle the climatic and environmental change occurred all over the world. Especially solar and wind power generation systems can be easily set up and are also economically feasible, and thus many industrial companies enter into this business. This paper suggests the overall architecture for the decentralized renewable power system and the prediction method of power on climatic change. The ultimate goal is to help manage the overall power efficiently and thus provide the technological basis for achieving zero-energy house.

  • PDF

A Statistical Analysis of External Force on Electric Pole due to Meteorological Conditions (기상현상에 의한 전주 외력의 통계적 분석)

  • Park, Chul Young;Shin, Chang Sun;Cho, Yong Yun;Kim, Young Hyun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.437-444
    • /
    • 2017
  • Electric Pole is a supporting beam used for power transmission/distribution which is sensitive to external force change of environmental factors. Therefore, power facilities have many difficulties in terms of maintenance/conservation from external environmental changes and natural disasters that cause a great economic impact. The aerial wire cause elasticity due to the influence of temperature, or factors such as wind speed and wind direction, that weakens the electric pole. The situation may lead to many safety risk in day-to-day life. But, the safety assessment of the pole is carried out at the design stage, and aftermath is not considered. For the safety and maintenance purposes, it is very important to analyze the influence of weather factors on external forces periodically. In this paper, we analyze the acceleration data of the sensor nodes installed in electric pole for maintenance/safety purpose and use Kalman filter as noise compensation method. Fast Fourier Transform (FFT) is performed to analyze the influence of each meteorological factor, along with the meteorological factors on frequency components. The result of the analysis shows that the temperature, humidity, solar radiation, hour of daylight, air pressure, wind direction and wind speed were influential factors. In this paper, the influences of meteorological factors on frequency components are different, and it is thought that it can be an important factor in achieving the purpose of safety and maintenance.

A Study on Dynamic Positioning System IMO class upgrade requirements (Dynamic Positioning System의 IMO Class 변경 요건에 관한 연구)

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.165-172
    • /
    • 2015
  • The class of Dynamic Positioning System is divided in 3 classes depending on its redundancy and reliability according to IMO and classification society. There are 3 DP classes such as DP Class 1, 2 and 3 according to IMO MSC/Circ. 645. Higher DP class vessel has higher reliability, since redundancy concept is applied to the DP vessel depending on its DP class and can operate more safely. There are not enough information about DP class notation, which are needed when a company builds a new or buys second hand DP vessel or modifies DP classes, even the Korean shipyard is building a lot of DP vessels now. Also, the practical case of DP vessel modification, which had been done in Korea, to meet DP notation of IMO and classification society, will be helpful for DP vessel modification and sales industry development in Korea as a new business. As such this research identified what kind of requirements need to be taken into account to be from DP class 1 to DP class 2. The real DP class modification case is used to identify the requirements of DP class upgrade. Through the FMEA the redundancy concept on power system, thruster system and DP control system need to apply for DP class upgrade. The power system have to keep its DP function even if just a single fault happens on the generator or switchboard. Also, the PMS is required to monitor and control power system. Ship's Surge, Sway and Yaw movements can be controlled by the remaining thruster system after a single thruster fails. Lastly, multiple installation of PRS, sensors and DP control system are required to keep DP ability after a single fault on the DP control systems.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

A Study on Design of 1.5MW Photovoltaic Power Generation System using Gwangmyeong Railway Station Building (광명역 고속철도 역사를 활용한 1.5MW급 태양광발전시스템 설계 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.592-599
    • /
    • 2016
  • In the 21st yearly session of the Conference of the Parties (COP 21) of the 2015 United Nations Climate Change Conference, held in Paris, France, in December 2015, the "Paris Agreement" was negotiated; this is a new global agreement on the reduction of climate change, which encourages every country to participate in countermeasures for global climate change. Along with such movements, the electric railway sector has also been actively engaged in low carbon technology. This paper studied the building of a 1.5MW photovoltaic power generation system using the rooftop of the Gwangmyeong Station Building, which is the largest roof among the high-speed railway station buildings in Korea; this station has passenger traffic that reached about 7 million in 2014. For this study, we configured an optimized photovoltaic (PV) power generation system and then estimated the expected annual energy production by using PV system software; we also calculated the expected revenue that could be obtained by linking this source to the power distribution system. The obtained data were used to analyze the contribution of low-carbon energy that could be obtained by introducing a PV power generation system on the roof of an electric railway station building.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

A Study on the Implementation and Modeling of 20kW Scale ESS Load Test Device for Emergency Generator (소방용 비상발전기의 현장부하시험을 위한 20 kW급 ESS 부하시험장치 모델링과 구현에 관한 연구)

  • Choi, Seung-Kyou;Lee, Hu-Dong;Choi, Sung-Sik;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.541-550
    • /
    • 2019
  • An emergency generator is key equipment for fire-fighting to supply power to fire-fighting facilities, which protect property and people in cases of fire accidents. A rated load test for emergency generators must be carried out by connecting an emergency load to the generator in accordance with related regulations. However, a no-load test has been performed for emergency generators in general since serious problems can occur when the main power is cut off, including the damage of customer devices and shut down of critical loads. Therefore, this paper proposes a load test method for an emergency generator using energy storage system (ESS) without the interruption of main power. The emergency power system was also modeled based on PSCAD/EMTDC software, and a 200-kW scale ESS load test device was implemented. The simulation and test results show that the load test method is useful and practical for an emergency power supply system.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.