• Title/Summary/Keyword: 배위

Search Result 389, Processing Time 0.023 seconds

A Study of Infrared Absorption in SrO-B2O3-Al2O3-SiO2 Glasses (SrO-B2O3-Al2O3-SiO2 유리계의 적외선 흡수 연구)

  • Moon, Seong-Jun;Hwang, In-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.7-10
    • /
    • 2003
  • Quarternary $SrO-B_2O_3-Al_2O_3-SiO_2$ glasses were fabricated as a function of $R({\equiv}SrO\;mole%/B_2O_3\;mole%)$ and $K({\equiv}(Al_2O_3+SiO_2)\;mole%/B_2O_3\;mole%)$. The structures of these glasses were investigated through Infrared absorption spectra. When R increased, the intensities of the absorption bands around $1,200{\sim}1,600cm^{-1}$ resulting from the B-O stretching vibration bond in the symmetrical trigonal $BO_3$ units decreased, and these of the absorption bands around $800{\sim}1,200cm^{-1}$ caused by the B-O stretching vibration bond of the tetrahedral $BO_4$ units varied. Also, the intensities of the absorption bands for the B-O stretching vibration band in trigonal $BO_3$ units increased and these of the bands for B-O stretching vibration bond in tetrahedral $BO_4$ units decreased as K increased.

  • PDF

The Structures and Thermal Properties of Divalent Ion Exchanged Zeolite A (2가 이온 치환 제올라이트 A 의 구조와 열적 성질)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.357-365
    • /
    • 1989
  • The positional parameters of framework atoms, cations, and water molecules in hydrated and dehydrated $Mg_4Na_4-A$, $Ca_6-A$, $Zn_5Na_2-A$ and $Co_4Na_4-A$ were determined by the optimization technique using some potential energy functions and VAIOA optimization program. Upon dehydration, cations in hydrated states move toward the framework oxygens of 6 rings. Frameworks of fully dehydrated zeolite A are more stable than those of fully dehydrated divalent cation exchanged Zeolite A. There are three different kinds of water molecules in divalent cation exchanged Zeolite A; W(III) (water molecules having hydrogen bonds), W(II) (water molecules associated with $Na^+$ ions), and W(I) (water molecules associated with divalent cations). Three different DTA endothermic peaks were observed corresponding to the dehydration of three different kinds of water molecules in divalent cation exchanged Zeolite A.

  • PDF

Synthesis, ESR and Electrochemical Characterization of Dioxygen Binding to Dirhodium Complexes with 2-anilinopyridinato Bridging Ligand (2-아닐리노 피리딘을 배위자로 하는 이핵 로듐착물의 두 산소첨가 생성물에 대한 합성 및 전기화학적 성질)

  • Kwang Ha Park;Moo Jin Jun;John. L. Bear
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.633-643
    • /
    • 1989
  • The R$Rh_2(ap)_4$(2,2-trans) isomer (ap = 2-anilinopyridinate), which has two anilino nitrogens and two pyridyl nitrogens bound to each rhodium ion trans to their own kind, shows activation towards the one electron reduction of dioxygen at -0.40 V vs SCE. The ESR spectrum taken at 123 K proves the formation of a $[Rh_2(ap)_4(O_2)]$ ion with oxygen axially bound to one rhodium ion and the complex is at a RhⅡ2 oxidation state. The complex will form [$Rh_2(ap)_4(O_2)(CH_3CN)]^-$ in presence of $CH_3CN/CH_2Cl_2$ mixture without breaking the Rh-$O_2^-$ bond. When oxidized at -0.25 and 0.55 V, $[Rh_2(ap)_4(O_2)]$ will undergo two one electron oxidations to form $Rh_2(ap)_4(O_2)[Rh_2(ap)_4(O_2)]^+$. Both species have an axially bound superoxide ion but the former is at $Rh^{II}Rh^{III }$and the later at $Rh^{III}_2$ oxidation states. The ESR spetra and $CH_3CN$ addition study, on the other hand, show that the later complex is better described as $[Rh_{II}Rh^{III}(ap)_4(O_2)]^+$ with the odd electron localized on rhodium ion and the complex has an axially coordinated molecular oxygen. The electrochemical and ESR studies also show that the degree of dioxygen activation is a function of electrochemical redox potential.

  • PDF

A Study on the Hydrated and Dehydrated $Mn^{2+}$-Exchanged Zeolite A ($Mn^{2+}$-치환 제올라이트 A 의 수화 및 탈수 구조에 관한 연구)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.623-632
    • /
    • 1989
  • The positions and interaction energies of framework atoms and water molecules of $Mn^{2+}$-exchanged zeolite A were calculated using some potential energy functions and an optimization program. The sum of interaction energies of framework atoms in dehydrated $Mn_{4,5}Na_3-A$ was approximately the same as those of thermally stable $Ca^{2+}$-or $Mg^{2+}$-exchanged zeolite A. Since $Mn^{2+}$ ions can form good coordination bonds with framework oxygens even in dehydrated state, $Mn^{2+}$-exchanged zeolite A is considered to be thermally stable. The optimized positions of framework atoms and ions in this work are agreed well with the crystallographic data. Three groups of water molecules are found in hydrated $Mn^{2+}$-exchanged zeolite A; W(I) group of water molecules having only hydrogen bonds, W(II) group coordinated to $Na^+$ ion, and W(III) group coordinated to $Mn^{2+}$ ion. The average binding energy of each group of water molecules decrease in the order of W(III) > W(II) > W(I). The activation energies in the dehydration reaction of each group of water molecules increased in accordance with their binding energy.

  • PDF

The Effects of the cis and trans Configurations of Ligands on the Calculated Dipole Moments for $[M(II)O_3N_3]$ and $[Ni(II)O_2N_4]$ Type Complexes ($[M(II)O_3N_3]$$[Ni(II)O_2N_4]$ 형태착물의 쌍극자 모멘트에 대한 리간드의 cis 및 trans 구조의 영향)

  • Sangwoon Ahn;Eu Suh Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.83-94
    • /
    • 1983
  • The effects of cis and trans configurations of ligands for $[M(II)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes [M(II) = Co(III), Ni(II) and Cu(II)] on the calculated dipole moments have been investigated, adpoting the eigenvectors of EHT calculation. The calculated dipole moments for cis complexes are higher than those of trans complexes. The calculated dipole moments for the octahedral trans $[Co(III)O_3N_3]$ type complex fall in the range of experimental values. However the calculated dipole moments for cis $[Ni(II) O_2N_4]$ type complexes fall in the range of the experimental values. These results predicts the trans structure for $[Co(III)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes. Those structures are in agreement with the experimental one (Three bidentate (O-N) ligands in $[M(II)O_3N_3]$ type complexes coordinate to the metal ion and two tridentate (O-N-N) ligands in [Ni(II)O2N4] type complexes coordinate to Ni(II) ion).

  • PDF

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

Synthesis and Characterization of trans-Dichlorocobalt(Ⅲ) Complex Containing N,N'-bis-[2(S)-pyrrolidinylmethyl]ethane-1,2-diamine (N,N'-bis-[2(S)-pyrrolidinylmethyl]ethane-1,2-diamine이 배위된 trans-Dichlorocobalt(Ⅲ) 착물의 합성과 특성)

  • Kim, Dong Yeup;Kim, Nam Jin;Son, Byung Sam;Lee, Dong Jin;Oh, Chang Eon;Doh, Myung Ki
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.940-945
    • /
    • 1995
  • The SS-epm(N,N '-bis-[2(S)-pyrrolidinylmethyl]ethane-1,2-diamine) ligand having stereospecificity has been prepared and reacted with $CoCl_2{\cdot}6H_2O$ or trans-$[Co(pyridine)_4Cl_2]Cl.$ The resultants are green crystals, both of which are identified to be trans-$[Co(SS-epm)Cl_2]_2(COCl_4)$ by elemental analysis and absorption spectra. CD spectrum of trans complex shows negative (-) cotton effect at long wavelength due to the vicinal effect of the stereospecifically chelated ligands. The conformation of SS-epm in trans complex is ${\delta}{\lambda}{\delta}$(SRRS) for each of the five membered chelated ring. $Co(II)Cl_4^{2-}$ as counter ion plays an importance role in the ionic association of the formation of trans complex with SS-epm. Furthermore, according to orientation of secondary amine, total strain energy on each isomers was calculated by molecular mechanics (MM) to verify structural characterization and spectral data.

  • PDF

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.

Synthesis, Spectral and Thermal Studies of Lanthanide(III) Complexes of Phenylbutazone (Phenylbutazone의 란탄(III) 착물에 대한 합성, 스펙트럼 및 열적 연구)

  • Anoop, M.R.;Binil, P.S.;Jisha, K.R.;Suma, S.;Sudarsanakumar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Lanthanide(III) complexes of 1,2-diphenyl-4-butyl-3,5-pyrazolidinedione(phenylbutazone, PB) have been synthesized and characterized by elemental analyses, molar conductance measurements, IR, UV-Vis. and NMR spectra. The spectral data reveal that the PB acts as a bidentate and mono-ionic ligand coordinating through both the carbonyl oxygens of the pyrazolidinedione ring. The molar conductance data suggest that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied by TG and DTG in air atmosphere and the results provide information about dehydration, thermal stability and thermal decomposition. The final products are found to be the corresponding metal oxides. The thermodynamic parameters and kinetic parameters were evaluated for the dehydration and decomposition stages. The negative entropy values of the decomposition stages indicate that the activated complexes have a more ordered structure than the reactants and that the reactions are slower than normal. Based on these studies, the complexes have been formulated as $[Ln(PB)_3]{\cdot}5H_2O$(Ln=La and Ce) and $[Ln(PB)_3(H_2O)_2]{\cdot}2H_2O$(Ln=Pr, Nd and Sm).

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF