• Title/Summary/Keyword: 배연

Search Result 497, Processing Time 0.022 seconds

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).

Development of Plasma Facility for Simultaneous Removal of SOx and NOx (플라즈마 배연탈황 탈질동시처리 장치 개발)

  • 엄희문;장경룡;박태성;심재구;한영욱
    • Environmental engineer
    • /
    • v.20 s.187
    • /
    • pp.58-64
    • /
    • 2002
  • 본 연구는 배가스 중에 함유된 황산화물과 질소산화물을 동시에 고효율로 처리할 수 있는 플라즈마 배연 동시처리장치 개발을 목표로 설정하고 2단계 2차년도부터 G-7과제로 수행하고 있다. 그 동안 수행된 내용을 살펴보면 우선, 플라즈마 배연처리 특성조사를 위해 러시아 기술을 토대로 1997년 9월 보령화력본부에 pilot plant(P/P)를 설치하고 펄스 발생기의 최적화 작업과 플라즈마 배연처리 특성에 영향을 주는 여러 운전인자에 대해 시험을 수행하였다.

  • PDF

A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels (도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구)

  • Ryu, Ji-Oh;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.347-365
    • /
    • 2020
  • In order to resolve traffic problems in urban areas and to increase the area of green spaces, tunnels in downtown areas are being increased. Additionally, the application of large port smoke extraction ventilation systems is increasing as a countermeasure to smoke extraction ventilation for tunnels with high potential for traffic congestion. It is known that the smoke extraction performance of the large port smoke extraction system is influenced not only by the amount of the extraction flow rate, but also by various factors such as the shape of the extraction port (damper) and the extraction air velocity through a damper. Therefore, in this study, the design standards and installation status of each country were investigated. When the extraction air flow rate was the same, the smoke extraction performance according to the size of the damper was numerically simulated in terms of smoke propagation distance, compared and evaluated, and the following results were obtained. As the cross-sectional area of the smoke damper increases, the extraction flow rate is concentrated in the damper close to the extraction fan, and the smoke extraction rate of the damper in downstream decreases, thereby increasing the smoke propagation distance on the downstream side. In order to prevent such a phenomenon, it is necessary to reduce the cross-sectional area of the smoke damper and increase the velocity of passing air through the damper so that the pressure loss passing through the damper increases, thereby reducing the non-uniformity of smoke extraction flow rate in the extraction section. In this analysis, it was found that when the interval distance of the extraction damper was 50 m, the air velocity passing through damper was 4.4 m/s or more, and when the interval distance of the extraction dampers was 100 m, the air velocity passing through damper was greater than 4.84 m/s, it was found to be advantageous to ensure smoke extraction performance.

Numerical Simulations on Reduction of Toxic Gas Propagation at High-Rise Apartment Building Fires (계단형 공동주택 화재시 독성가스 전파 저감에 관한 수치해석적 연구)

  • Lee, Seong-Chul;Hong, Yi-Pyo;Park, Young-Rok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.255-258
    • /
    • 2008
  • 본 연구에서는 이전의 연구를 통해 계단형 공동주택 화재 시 재실자 피난특성 및 연기거동에 관한 연구를 실물실험을 통해 수행한 바 있으나 이때 야기된 문제점들을 적절한 방재설비를 도입함으로써 일부 해소하고자 하였다. 따라서 본 연구에서는 이전의 연구와 동일한 대상 건물과 조건에서 수치해석을 수행하며 특히 계단실에 방재설비(배연팬 등) 설치 유 무에 따른 독성가스의 전파 특성 및 최상층까지의 도달시간등을 비교 검토하였다. 계단형 공동주택에서 층간에 배연팬이 설치되어 작동되는 경우가 배연팬이 없는 경우보다 약 45%의 CO 방출량을 줄일 수 있을 것으로 판단되지만 1층 출입구를 통해 유입되는 공기량은 배연팬이 없는 경우가 배연팬이 설치되어 작동되는 경우보다 약 23% 크기 때문에 이로 인해 제연풍속의 증가를 가져올 수도 있을 것이다.

  • PDF

A Study on the Application of Ventilation Equipment in an Underground Fire (지하공간 화재시 배연장비의 활용에 관한 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • In this study, experiments were conducted to evaluate the effectiveness of ventilation equipment in underground fires. Two type of Ventilators were used in experiments. Experiments were carried out using ethanol square pool fire. Maximum heat release rate was about 460kW. Visibility and temperature distribution were evaluated according to mechanical ventilation. In blower type ventilation, visibility was increased and temperature was lowered.

Experimental Investigation about Optimum Smoke Extraction System for Underground Station (축소 모형 실험을 통한 정거장내 적정 배연방식에 관한 연구)

  • Lee, Ho-Keun;Kim, Myoung-Woo;Lee, Phill-Young;Kim, Nam-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • If fire is occurred in the subway, the train must be moved to the closest station and make passengers get off the train. As a matter of fact, the Fire of Dae-gu Subway was coped with this way. But, the fire smoke extraction system of real subway stations have not designed to deal with fire of trains yet. Therefore, we have to establish a plan of station railroad for preventing from unexpected damage when the fired train comes to the station. The purpose of this study is to establish the effective smoke extraction measure that is to prevent stations from damage by the scale-down experiment.

A Numerical Study for the Operation of Partial Smoke Extraction System in Tunnel Fire (터널화재시 부분배연설비의 운영방안을 위한 수치해석적 연구)

  • Yoo, Yong-Ho;Lee, Eui-Ju;Shin, Hyun-Jun;Shin, Han-Chol
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.72-79
    • /
    • 2006
  • The objective of this study is to analyze the smoke extraction efficiency using by the partial extraction system with CFD simulation for case of tunnel fire. The Comparison of CFD results with the preceding scaled model test results, it is equal to the smoke extraction efficiency and smoke stratification in tunnel by the partial smoke extraction system (distributed damper). It shows that the smoke extraction efficiency is increased about 7% by the distributed damper which is opened near fire, compare with the distributed damper which is all opened. The case of the fire occurs on a traffic jam in a tunnel, it is proposed that the operating method of partial smoke extraction system for the escaping passengers.

An Experimental Study on Mechanical Ventilation Using an Exhaust Engine in Corridor Fires (복도공간 화재 시 배연차를 활용한 배연에 관한 실험적 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2010
  • Ventilation fans utilized correctly can increase the effectiveness of fire fighters and survivability of occupants. It is possible to increase the pressure of a corridor to prevent the infiltration of smoke. In this study, experiments were carried out to evaluate ventilation effectiveness in corridor fires. Corridor used in the experiment was 20 m long. Heptane was used as a fuel. Temperature and visibility were measured in order to evaluate ventilation effectiveness according to the position of a vent. Vent distance ranged from 0 m to 4 m and height varied from 0 m to 1.5 m. When the vent was positioned 2 m long and 0.75 m high the result was most effective.

Use of Flue Gas Desulfurization Gypsum as an Activator for a Ground Granulated Blast Furnace Slag (고로슬래그 자극재로써 건식 및 습식 배연탈황석고의 활용가능성 평가)

  • Lee, Hyun-Suk;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • Flue gas desulfurization gypsum(FDG) is produced when removing sulfur oxides from combustion gas generated by coal power plant. However, the recycling of FDG is still limited to the certain purposes. In order to expand the possible application of FDG, this study aims to utilize FDG as an activator for ground granulated blast furnace slag. FDG produced by dry- and wet-process were used for the experiments. Slag paste specimens were produced by mixing with deionized water and simulated pore solution, and the role of FDG as an activator for blast furnace slag was evaluated using hydration study by XRD analysis and compressive strength development. According to the results, dry-type FDG was found to work as an activator for blast furnace slag without the presence of soluble alkalis. However, wet-type FDG needs assistance by soluble alkalis in order to work as an activator for blast furnace slag. It was also found that the substitution of dry- and wet-type FDG into blast furnace slag can increase the 28 day compressive strength of slag paste. It is expected that efficient and economical recycling of FDG will be possible if quantitative analysis of strength enhancement according to substitution rate of both dry- and wet-type FDG.

Experimental study on the effect of exhaust ventilation by shafts for case of fire in long traffic tunnels (장대 교통터널 화재시 수직갱의 배연효과에 관한 실험적 연구)

  • Yoo, Yong-ho;Yoon, Chan-hoon;Yoon, Sung-wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement and to investigate the effect of exhaust ventilation using by shafts for case of fire in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and test were carried out systematically. The results of the shaft height test show that the effect on exhaust ventilation by a shaft delays the propagation time of backlayering, and the temperature decreases as the shaft height increases. If the fire occurs downstream of the shaft, the backlayering develops to get stronger by the shaft exhaust effect and then the propagation of CO and temperature increase along with propagation of CO. That is to say, in the case of fire downstream of the shaft, the shaft has the advantage of smoke exhaust effects, but it might result in a dangerous situation for the escaping passengers due to the more developed backlayering.

  • PDF