• Title/Summary/Keyword: 배액전극제어법

Search Result 7, Processing Time 0.025 seconds

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.

Application Time of Irrigation Management by Drainage Level Sensor in Tomato Perlite Bag Culture (토마토 펄라이트 자루재배시 배액전극제어법 적용시점 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The experiment was implemented to introduce the drainage electrode irrigation system as early as possible after transplanting in order to save the nutrient solution in a convenient way. Drainage electrode irrigation method was introduced 15, 19 or 22 days after transplanting after irrigation was firstly controlled by time clock. Time clock method was also treated as a control plot. Drainage electrode method could be adopted from 15 days after transplanting, 15 days earlier than the present introducing time. The growth and yield was better in treatments with drainage electrode method. Water and fertilizer use efficiency were the highest in the treatment of 15 days, the lowest in time clock treatment.

Evaluation of Solution Mediator in Irrigation System Controlled by Drainage Level Sensor (배액전극제어법 적용시 배액 이동매개체 선발)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.23-26
    • /
    • 2010
  • Commercial fibers such as two kinds of micro-fiber, flannel, and cotton were analyzed for their nutrient solution absorption capacity to select hydrophilic mat used for the irrigation management by drainage level sensor in perlite bag culture. The selected mat was evaluated in terms of absorption capacity. Cotton had the highest absorption capacity and was revealed to be the most appropriate for the control system.

Appropriate Sensor Height in an Irrigation Management System by Drainage Level Sensor for Perlite Bag Culture of Cucumber and Paprika (오이와 착색단고추의 펄라이트자루재배시 배액전극제어법에서의 적정 배액전극높이 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • An experiment was conducted to test different heights of drainage level sensors in an irrigation management system for perlite bag culture of cucumber and paprika. The sensors were placed at 4, 8, 12, and 16 mm from the bottom of the container. Both cucumber and paprika did not show any significant difference in growth and yield among the treatments. However, placing the sensor at 4 mm seemed to be the best in order to prevent over-supply of water at the beginning of the day.

Control of Daily First Drainage Time by Irrigation Management with Drainage Level Sensor in Tomato Perlite Bag Culture (배액전극제어법에 의한 토마토 펄라이트 자루재배시 일중 첫 배액 제어)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.409-414
    • /
    • 2010
  • The first drainage time in a day was controlled for precise irrigation management with low consumption of nutrient solution in tomato perlite bag culture system by measuring water level of drained water in drainage catchment part. This method automatically adjusted the irrigation time under any condition of light, temperature and humidity, resulting in stable water content in substrates. However, it was difficult to keep the time consistent as they were set. It drained with the deviation of 20 min in the treatment in which the first drainage time was set at 10:00 and 50 min in the treatment set at 10:30. The first drainage time was not constant, but the drain occurred stably before noon in the treatment of which irrigation frequency was longer than 30 min. The drainage ratio was better balanced in all the treatments using drainage level sensors than the treatment using time clock for irrigation control. High water and fertilizer efficiencies were obtained. Although the growth, total yield and sugar content were not significantly different between the treatments, fruit weight was higher in the treatments using drainage level sensors than that using timer.

Appropriate Each Irrigation Quantity in Irrigation System Controlled by Drainage Level Sensor for Perlite Bag Culture of Tomato (배액전극제어법을 이용한 토마토 펄라이트 자루재배시 일회급액량 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This research was conducted to investigate the effects of irrigation quantity in irrigation management system controlled by drainage level sensors for perlite bag culture on the growth and yields of tomatoes during different growth stages. Tomato plants were irrigated with four selected methods; supplying small quantity (~70 mL) during entire growth (S-S), large quantity (~145 mL) during entire growth (L-L), small quantity before harvesting the first cluster fruits and large quantity after harvesting (S-L), and large quantity until harvesting the first cluster fruits and small quantity after harvesting (L-S). The irrigation quantity supplied in each time was gradually adjusted along with the ratios as the tomato crop grew during different growth stages. The growth of the tomato plants was unstable and slow during the entire cropping period when the plant was irrigated by small or large quantities (S-S or L-L). In L-S treatment, the growth phase of the tomato was changed from vegetative to generative growth on the basis of the plant development index when each irrigation quantity was changed. The L-S treatment exhibited the largest root volume and yields with stable drainage ratios. Therefore, the optimum irrigation quantity was determined as 145 mL before harvesting the first cluster fruits and 70 mL after harvesting.

Development of a Trial Product for Irrigation Management in Substrate Culture (고형배지경 급액관리 시작기 개발)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • This experiment was carried out to commercialize an irrigation control system by finding out problems and solving them in application of a nutrient supply system through this experiment. Its efficiency had been tested through hydroponic cultivation of tomato and cucumber using this system in the farmer's plastic house (1-2W, 20a : Yanggyo-ri, Oseong-myeon Gyeonggi-do) from November. 2006, too. In the first cultivation, tomato seeds (cultivar Coco, Takii Seed Co. Japan) were sowed on November 8, 2006, and transplanted on January 8, 2007. and then, in the second, cucumber (Chuichong, Nongwoo Seed Co.) were cultivated in the same plastic house (sowing date : June 27, transplanting date : July 13). In the third, another cucumber cultivar (Jo-woon, Dongbu-hannong Seed Co.) were cultivated (sowing date : September 5, transplanting date : September 23). All of seedlings were transplanted on perlite bag ($W340{\times}L1,200{\times}H150mm$, 40L). By using this system, 971 boxes (5 kg/box) of tomato were produced and sold, and then total income was 5,466 thousand won per 10a. On the second cultivation, total amount of cucumber production was 489 boxes (50 ea/box), and total income was 7,380 thousand won. On the third cultivation, total amount of production was 67 boxes (100 ea/box), and total income was 1,854 thousand won. On the other hand, this system saved irrigated water by 50% ($4,000{\rightarrow}2,000L/10a/day$) in tomato cultivation, and by 44%($4,500{\rightarrow}2,500L/10a/day$) in cucumber cultivation. It also saved cost of nutrients by 50% in tomato ($1,648{\rightarrow}824thousand\;won/10a$), and 44% in cucumber ($1,648{\rightarrow}725thousand\;won/10a$). Furthermore this irrigation system maintained moisture content in perlite bag stable during cultivation period. Therefore, this system was successfully applied on farmer's greenhouse without a problem and can be commercialized for farmers.