• Title/Summary/Keyword: 배아 줄기 세포

Search Result 124, Processing Time 0.021 seconds

Modification of Efficient Vitrification Method by Using Open Pulled Straw (OPS) and EM Grid as Vehicles in Human Embryonic Stem Cell (인간 배아 줄기세포의 OPS와 Grid를 이용한 유리화 동결법의 효율성 비교)

  • 박규형;최성준;김희선;오선경;문신용;차광렬;정형민
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Human embryonic stem (hES) cell lines have been derived from human blastocysts and are expected to have far-reaching applications in regenerative medicine. The objective of this study is to improve freezing method with less cryo-injuries and best survival rates in hES cells by comparing various vitrification conditions. For the vitrifications, ES cells are exposed to the 4 different cryoprotectants, ethylene glycol (EG), 1,2-propanediol (PROH), EG with dime-thylsulfoxide (DMSO) and EG with PROH. We compared to types of vehicles, such as open pulled straw (OPS) or electron microscopic cooper grids (EM grids). Thawed hES cells were dipped into sequentially holding media with 0.2 M sucrose for 1 min, 0.1 M sucrose for 5 min and holding media for 5 min twice and plated onto a fresh feeder layer. Survival rates of vitrified hES cells were assessed by counting of undifferentiated colonies. It shows high survival rates of hES cells frozen with EG and DMSO (60.8%), or EG and PROH(65.8%) on EM grids better than those of OPS, compared to those frozen with EG alone (2.4%) or PROH alone (0%) alone. The hES cells vitrified with EM grid showed relatively constant colony forming efficiency and survival rates, compared to those of unverified hES cells. The vitrified hES cells retained the normal morphology, alkaline phosphates activity, and the expression of SSEA-3 and 4. Through RT-PCR analysis showed Oct-4 gene expression was down-regulated and embryonic germ layer markers were up-regulated in the vitrified hES cells during spontaneous differentiation. These results show that vitrification method by using EM grid supplemented with EG and PROH in hES cells may be most efficient at present to minimize cyto-toxicity and cellular damage derived by ice crystal formation and furthermore may be employed for clinical application.

Differentiation of Mesenchymal Stem Cell-like Cell from Feeder Free Cultured Human Embryonic Stem Cells using Direct Induction System (Feeder-free에서 배양된 인간배아줄기세포의 직접분화유도 방법을 이용한 간엽줄기세포로의 분화)

  • Lee, Min-Ji;Lee, Jae-Ho;Kim, Ju-Mi;Shin, Jeong-Min;Park, Soon-Jung;Chung, Sun-Hwa;Lee, Kyung-Il;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have the multipotent capacity and this potential can be applied for obtaining valuable cell types which can use for cell therapy on various regenerative diseases. However, insufficient availability of cellular source is the major problem in cell therapy field using adult stem cell sources. Recently, human embryonic stem cells (hESCs) have been highlighted to overcome a limitation of adult cellular sources because they retain unlimited proliferation capacity and pluripotency. To use of hESCs in cell therapy, above all, animal pathogen free culture system and purification of a specific target cell population to avoid teratoma formation are required. In this study, we describe the differentiation of a mesenchymal stem cell-like cells population from feeder-free cultured hESCs(hESC-MSCs) using direct induction system. hESC-MSCs revealed characteristics similar to MSCs derived from bone marrow, and undifferentiated cell markers were extremely low in hESC-MSCs in RT-PCR, immunostaining and FACS analyses. Thus, this study proffer a basis of effective generation of specialized human mesenchymal stem cell types which can use for further clinical applications, from xenofree cultured hESCs using direct induction system.

Effects of Neurotrophic Factors on the Generation of Functional Dopamine Secretory Neurons Derived from in vitro Differentiated Human Embryonic Stem Cells (신경성장촉진 인자가 인간 배아줄기세포 유래 도파민 분비 신경세포형성에 미치는 영향)

  • Lee, Keum-Sil;Kim, Eun-Young;Shin, Hyun-Ah;Cho, Hwang-Yoon;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.19-27
    • /
    • 2004
  • Objective: This study was to examine the in vitro neural cell differentiation patterns of human embryonic stem (hES) cells following treatment of various neurotrophic factors [basic fibroblast growth factor (bFGF), retinoic acid (RA), brain derived neurotrophic factor (BDNF) and transforming growth factor (TGF)-$\alpha$], particulary in dopaminergic neuron formation. Methods: The hES cells were induced to differentiate by bFGF and RA. Group I) In bFGF induction method, embryoid bodies (EBs, for 4 days) derived from hES were plated onto gelatin dish, selected for 8 days in ITSFn medium and expanded at the presence of bFGF (10 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14 and 21 days. Group II) For RA induction, EBs were exposed of RA ($10^{-6}M$) for 4 days and allowed to differentiate in N2 medium for 7, 14 and 21 days. Group III) To examine the effects of additional neurotrophic factors, bFGF or RA induced cells were exposed to either BDNF (10 ng/ml) or TGF-$\alpha$ (10 ng/ml) during the 21 days of final differentiation. Neuron differentiation and dopamine secretion were examined by indirect immunocytochemistry and HPLC, respectively. Results: The bFGF or RA treated hES cells were resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with BDNF or TGF-$\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression of a dopaminergic neuron marker, compared to control (p<0.05). In contrast, no effect was observed on the rate of mature neuron (NF-200) or glutamic acid decarboxylase-positive neurons. Immunocytochemistry and HPLC analyses revealed the higher levels of TH expression (20.3%) and dopamine secretion (265.5 $\pm$ 62.8 pmol/mg) in bFGF and TGF-sequentially treated hES cells than those in $\alpha$ RA or BDNF treated hES cells. Conclusion: These results indicate that the generation of dopamine secretory neurons from in vitro differentiated hES cells can be improved by TGF-$\alpha$ addition in the bFGF induction protocol.

In vitro Neural Cell Differentiation of Genetically Modified Human Embryonic Stem Cells Expressing Tyrosine Hydroxylase (Tyrosine Hydroxylase 유전자가 주입된 인간 배아줄기세포의 체외 신경세포 분화)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Keum-Sil;Cho, Hwang-Yoon;Kim, Yong-Sik;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Objective: This study was to examine in vitro neural cell differentiation pattern of the genetically modified human embryonic stem cells expressing tyrosine hydroxylase (TH). Materials and Methods: Human embryonic stem (hES, MB03) cell was transfected with cDNAs cording for TH. Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA, embryoid bodies (EB, for 4 days) derived from TH#2/MB03 cells were exposed to RA ($10^{-6}M$)/AA ($5{\times}10^{-2}mM$) for 4 days, and were allowed to differentiate in N2 medium for 7, 14 or 21 days. Exp. II) When b-FGF was used, neuronal precursor cells were expanded at the presence of b-FGF (10 ng/ml) for 6 days followed by a final differentiation in N2 medium for 7, 14 or 21 days. Neuron differentiation was examined by indirect immunocytochemistry using neuron markers (NF160 & NF200). Results: After 7 days in N2 medium, approximately 80% and 20% of the RA or b-FGF induced Th#2/MB03 cells were immunoreactive to anti-NF160 and anti-NF200 antibodies, respectively. As differentiation continued, NF200 in RA treated cells significantly increased to 73.0% on 14 days compared to that in b-FGF treated cells (53.0%, p<0.05), while the proportion of cells expressing NF160 was similarly decreased between two groups. However, throughout the differentiation, expression of TH was maintained ($\sim$90%). HPLC analyses indicated the increased levels of L-DOPA in RA treated genetically modified hES cells with longer differentiation time. Conclusion: These results suggested that a genetically modified hES cells (TH#2/MB03) could be efficiently differentiated in vitro into mature neurons by RA induction method.

Human Amniotic Fluid Cells Support Expansion Culture of Human Embryonic Stem Cells (양수 세포를 이용한 인간배아줄기세포의 배양)

  • Kim, Hee-Sun;Seol, Hye-Won;Ahn, Hee-Jin;Oh, Sun-Kyung;Ku, Seung-Yup;Kim, Seok-Hyun;Choi, Young-Min;Kim, Jung-Gu;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.261-271
    • /
    • 2004
  • Objective: This study was performed to evaluate the possibility of prolonged culture of human embryonic stem cells (hESC; SNUhES2) on human amniotic fluid cells (hAFC), which had been storaged after karyotyping. Method: The hAFC was prepared for feeder layer in the presence of Chang's medium and STO medium (90% DMEM, 10% FBS) at $37^{circ}C$ in a 5% $CO_2$ in air atmosphere. Prior to use as a feeder layer, hAFC was mitotically inactivated by mitomycin C. The hESCs on hAFC were passaged mechanically every seven days with ES culture medium (80% DMEM/F12, 20% SR, bFGF). Results: The hAFC feeder layer support the growth of undifferentiated state of SNUhES2 for at least 59 passages thus far. SNUhES2 colonies on hAFC feeder appeared slightly angular and flatter shape as compared with circular and thicker colonies observed with STO feeder layer and showed higher level with complete undifferentiation in seven days. Like hESC cultured on STO feeders, SNUhES2 grown on hAFC expressed normal karyotype, positive for alkaline phosphatase activity, high telomerase activity, Oct-4, SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81 and formed embryoid bodies (EBs). Conclusion: The hAFC supports undifferentiated growth of hESC. Therefore, these results may help to provide a clinically practicable method for expansion of hESC for cell therapies.

Effective Isolation of Endodermal Lineage Cells Derived from Human Embryonic Stem Cells Post Activin-A Treatment (Activin-A 처리에 의해 분화 촉진된 인간 배아 줄기세포 유래 내배엽성 세포의 효과적인 정제)

  • Kim, Mun-Kyu;Moon, Sung-Hwan;Park, Soon-Jung;Lee, Kyung-Il;Shin, Jeong-Min;Jang, Jae-Woo;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.135-141
    • /
    • 2010
  • Embryoid bodies (EBs) generated from human embryonic stem cells (hESCs) include spontaneously induced endodermal lineage cells (ELCs). Activin-A plays important roles in the endoderm differentiation of hESCs. Despite studies on the generation of ELCs from hESCs with treatment of Actvin-A, it was unclear for localization and pattern of ELCs by Activin-A during differentiation of hESCs. Accordingly in this study, we knew that Actvin-A increased the cystic EBs formation, including the highly enriched AFP (endoderm lineage specific marker)-expressing cells in the surface of cystic EBs. To induce the EBs formation from undifferentiated hESCs, cells were transferred onto petri-dish and cultured in suspension condition without bFGF removed hESC media (EB media) for 3 days. Next to investigate the effect of Activin-A, EBs were subsequently cultured in EB media supplement with 100 ng/ml Activin-A for 3 days. After 5~7 days of Activin-A treatment, cystic EBs began to appear which increased in numbers reaching ~60% of initially formed EBs over 5 days. Endoderm lineage marker, AFP were highly expressed and specifically localized at the surface region of cystic EBs comparison with normal EBs. We next attached the cystic EBs onto gelatin-coated plates and cultured for 5 days. In the results of real-time PCR and immunocytochemistry analysis, AFP-expressing cells migrated and localized at the outgrowth region of attached cystic EBs. To obtain the AFP-expressing cells of the outgrowth region, we manually isolated by using micro-dissection and cultured them. These cells strongly express AFP over 70% of isolated cells post re-plating. Here, we first showed an expression pattern of specifically localized ELCs by Activin-A during differentiation of hESCs. From this observation, we could highly purified ELCs from undifferentiated hESCs. Taken together, our system will provide a novel and efficient option to generate ELCs from hESCs.

Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment (BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사)

  • Kim, Jung-Mo;Son, On-Ju;Cho, Youn-Jeong;Lee, Jae-Ho;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Functional Cardiomyocytes Formation Derived from Parthenogenetic Mouse Embryonic Stem Cells (단위발생 유래 생쥐 배아줄기세포의 기능성 심근세포 형성)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Young-Jae;Lee, Keum-Sil;Park, Eun-Mi;Lee, Hoon-Taek;Chung, Kil-Saeng;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2002
  • Objective : This study was to establish a reproducible differentiation system from the parthenogenetic mouse embryonic stem (P-mES02) cells into functional cardiomyocytes like as in vitro fertilization mouse embryonic stem (mES01) cells. Materials and Methods: To induce differentiation, P-mES02 cells were dissociated and aggregated in suspension culture environment for embryoid body (EB) formation. For differentiation into cardiomyocytes, day 4 EBs were treated with 0.75% dimethyl sulfoxide (DMSO) for another 4 days (4-/4+) and then were plated onto gelatin-coated dish. Cultured cells were observed daily using an inverted light microscope to determine the day of contraction onset and total duration of continuous contractile activity for each contracting focus. This frequency was compared with the results of DMSO not treated P-mES02 group (4-/4-) and mES01 groups (4-/4+ or 4-/4-). For confirm the generation of cardiomyocytes, beating cell masses were treated with trypsin-EDTA, dispersed cells were plated onto glass coverslips and incubated for 48 h. Attached cells were fixed using 4% paraformaldehyde and incubated with specific antibodies (Abs) to detect cardiomyocytes (anti-sarcomeric ? -actinin Ab, 1 : 100; anti-cardiac troponin I Ab, 1 : 2000) for 1 h. And the cells were finally treated with FITC or TRITC labelled 2nd Abs, respectively, then they were examined under fluorescence microscopy. Results: Rhythmically contracting areas in mES01 or P-mES02 cells were firstly appeared at 9 or 10 days after EBs plating, respectively. The highest cumulative frequency of beating EBs was not different in both treatment groups (mES01 and P-mES02, 4-/4+) with the results of 61.3 % at 13 days and 69.8% at 15 days, respectively. Also, the contracting duration of individual beating EBs was different from minimal 7 days to maximal 53 days. However, DMSO not treated groups (mES01 and P-mES02, 4-/4-) also had contracting characteristics although their frequency was a few compared to those of DMSO treated groups (6.0% and 4.0%). Cells recovered from the spontaneously contracting areas within EBs in both treated groups were stained positively with muscle specific anti-sarcomeric ? -actinin Ab and cardiac specific anti-cardiac troponin I Ab. Conclusion: This study demonstrated that the P-mES02 cell-derived cardiomyocytes displayed similarly structural properties to mES01 cell-derived cardiomyocytes and that the DMSO treatment enhanced the cardiomyocytes differentiation in vitro.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: Effects of PDGF-bb and BDNF on the Generation of Functional Neurons (인간 배아 줄기세포 유래 신경세포로의 분화: BDNF와 PDGF-bb가 기능성 신경세포 생성에 미치는 영향)

  • Cho, Hyun-Jung;Kim, Eun-Young;Lee, Young-Jae;Choi, Kyoung-Hee;Ahn, So-Yeon;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Objective: This study was to investigate the generation of the functional neuron derived from human embryonic stem (hES, MB03) cells on in vitro neural cell differentiation system. Methods: For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for $7{\sim}10$ days, 20 ng/ml of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron, neural progenitor cells were cultured in i) N2 medium only (without bFGF), ii) N2 supplemented with 20 ng/ml platelet derived growth factor-bb (PDGF-bb) or iii) N2 supplemented with 5 ng/ml brain derived neurotrophic factor (BDNF) for 2 weeks. Identification of neural cell differentiation was carried out by immunocytochemistry using $\beta_{III}$-tubulin (1:250), MAP-2 (1:100) and GFAP (1:500). Also, generation of functional neuron was identified using anti-glutamate (Sigma, 1:1000), anti-GABA (Sigma, 1:1000), anti-serotonin (Sigma, 1:1000) and anti-tyrosine hydroxylase (Sigma, 1:1000). Results: In vitro neural cell differentiation, neurotrophic factors (PDGF and BDNF) treated cell groups were high expressed MAP-2 and GFAP than non-treated cell group. The highest expression pattern of MAP-2 and $\beta_{III}$-tubulin was indicated in BDNF treated group. Also, in the presence of PDGF-bb or BDNF, most of the neural cells derived from hES cells were differentiated into glutamate and GABA neuron in vitro. Furthermore, we confirmed that there were a few serotonin and tyrosine hydroxylase positive neuron in the same culture environment. Conclusion: This results suggested that the generation of functional neuron derived from hES cells was increased by addition of neurotrophic factors such as PDGF-bb or BDNF in b-FGF induced neural cell differentiation system and especially glutamate and GABA neurons were mainly produced in the system.

Regulation of Matrix Metalloproteinase-1 Expression by the Homeodomain Transcription Factor Caudal in Drosophila Intestine (초파리 장조직에서 Caudal 전사조절인자에 의한 matrix metalloproteinase-1 발현 조절)

  • Lee, Shin-Hae;Hwang, Mi-Sun;Choi, Yoon-Jeong;Kim, Young-Shin;Yoo, Mi-Ae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1600-1607
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family plays essential roles in physiological processes such as embryonic development, angiogenesis, wound healing, and tissue homeostasis as a consequence of MMPr capacity for breaking down many types of extracellular matrix proteins. Imbalanced regulation of MMP expression can also lead to pathological conditions such as tumor progression. We recently reported that the Drosophila Mmp1 gene is highly expressed in the digestive tract and is required for the maintenance of intestinal homeostasis such as by restriction of uncontrolled intestinal stem cell proliferation. However, the regulatory mechanisms of MMP gene expression in the intestine remain unclear. In this study, we determined that the expression of Mmp1 is regulated by the homeodomain transcription factor Caudal. Experiments using the targeted expression of Caudal under the regulation of Gal4-UAS system indicated that endogenous Caudal is required for the Mmp1 gene expression in the adult Drosophila intestine and that exogenous Caudal induces Mmp1 expression. Transient transfection experiments indicated that Caudal can activate the promoter activity of Mmp1 and that several putative Caudal binding sites in the 5'-flanking region of the Mmp1 gene may be critical to the upregulation by Caudal. Our data suggest that Mmp1 is one of the target genes of Caudal in physiological normal condition and in tumorigenesis.