• Title/Summary/Keyword: 배아유전자 편집

Search Result 4, Processing Time 0.033 seconds

A Study on How Governance of Genetic Scissors CRISPR-Cas9 for Research on Embryos Can Encourage a Researcher to Have a Sense of Responsibility - Focus on the Bioethics and Safety Act Article 47 - (유전자가위 CRISPR-Cas9을 이용한 인간 배아 연구에 있어서 연구자의 책임의식 고양을 위한 거버넌스 -개정 생명윤리 및 안전에 관한 법률 제47조를 중심으로-)

  • Kim, Minsung
    • The Korean Society of Law and Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-148
    • /
    • 2022
  • CRISPR-Cas9 is one of the gene-editing technologies that infinite potential. It may provide human beings with many benefits or cause unanticipated challenges. The governance as standards setting or regulation of gene-editing technologies can contribute to keeping a balance between scientific value and ethical commitments. Guaranteeing public participation provides an additional opportunity to think about ethical and moral considerations: For whose benefit the internationally discussed governance of gene-editing technologies is directed at? There is a doubt regarding whether the governance justifies scientific researchers' gene-editing research. Suppose that governance promotes the advancement of CRISPR-Cas9, it should also encourage greater research responsibility. If not, there may be tragedies brought about by the misconduct of researchers. Thus, the essential matter on the governance for the research of CRISPR-Cas9 is the researchers' responsibility.

A Review on the Legal Issues in Using CRISPR-Cas9 (CRISPR-Cas9 활용에 관한 법적 쟁점 검토)

  • Yoo Jihong
    • Studies on Life and Culture
    • /
    • v.53
    • /
    • pp.3-28
    • /
    • 2019
  • Since the development of gene scissors 'CRISPR in 2012, CRISPR has been called the hope to lead the future of science and cure genetic diseases. But many indiscriminate experiments and destructions on human embryos have been made. For these reasons, ethical controversies and concerns have been amplified. At present, We have to make the law and the system step by step after reviewing and discussing the level of technology and social impact thoroughly. On the premise of this situation, in this study, I reviewed the patent dispute, interpretation of bioethics law, and the legislative theory. CRISPR could not have made the off-target effect zero. also, we just know only a few genes whose function is known in DNA networks. Therefore, it should be acknowledged that there are limits obviously to technical safety and knowledge of DNA . No means of gene editing on human embryo should be allowed. In order to carry out gene therapy on somatic cell , Diseases , dugs and treatment methods hat can be allowed by the law should be specified concretely in the positive form inEnforcement Decree of the Bioethics and Safety Act.

Biogenesis of Lysosome-related Organelle Mutant Silkworms by Direct Injection of a Cas9 Protein-guided RNA Complex into Bombyx mori Embryos (Cas9 단백질/ 가이드 RNA 복합체를 이용한 누에 BmBLOS 유전자 편집)

  • Kim, Kee Young;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2019
  • Genome editing technology employing gene scissors has generated interest in molecular breeding in various fields, and the development of the third-generation gene scissors of the clustered, regularly interspaced short palindromic repeat (CRISPR) system has accelerated the field of molecular breeding through genome editing. In this study, we analyzed the possibility of silkworm molecular breeding using gene scissors by genomic and phenotypic analysis after editing the biogenesis of lysosome-related organelles (BmBLOS) gene of Bakokjam using the CRISPR/Cas9 system. Three types of guide RNAs (gRNA) were synthesized based on the BmBLOS gene sequence of Bakokjam. Complexes of the prepared gRNA and Cas9 protein were formed and introduced into Bombyx mori BM-N cells by electroporation. Analysis of the gene editing efficiency by T7 endonuclease I analysis revealed that the B4N gRNA showed the best efficiency. The silkworm genome was edited by microinjecting the Cas9/B4N gRNA complex into silkworm early embryos and raising the silkworms after hatching. The hatching rate was as low as 18%, but the incidence of mutation was over 40%. In addition, phenotypic changes were observed in about 70% of the G0 generation silkworms. Sequence analysis showed that the BmBLOS gene appeared to be a heterozygote carrying the wild-type and mutation in most individuals, and the genotype of the BmBLOS gene was also different in all individuals. These results suggest that although the possibility of silkworm molecular breeding using the CRISPR/Cas9 system would be very high, continued research on breeding and screening methods will be necessary to improve gene editing efficiency and to obtain homozygotes.

Artificial Mutation for Silkworm Molecular Breeding Using Gene Scissors (유전자 가위의 이용과 누에 분자 육종을 위한 인위적 돌연변이 유발)

  • Hong, Jeong Won;Jeong, Chan Young;Yu, Jeong Hee;Kim, Su-Bae;Kang, Sang Kuk;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.701-707
    • /
    • 2020
  • Gene editing technology using the clustered regularly interspaced short palindromic repeat (CRISPR) and the CRISPR associated protein (Cas)9 has been highly anticipated in developing breeding techniques. In this study, we discuss gene scissors as a tool for silkworm molecular breeding through analysis of Bombyx mori Kynurenine 3-Monooxygenase (BmKMO) gene editing using the CRISPR/Cas9 system and analysis of generational transmission through mutagenesis and selective crossing. The nucleotide sequence of the BmKMO gene was analyzed, and three guide RNAs (gRNAs) were prepared. Each synthesized gRNA was combined with Cas9 protein and then analyzed by T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA and Cas9 complexes were subsequently microinjected into the silkworm embryos; the hatching rate was 18% and the incidence of mutation was 60%. The gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed. In homozygotes generated by self-crossing, a mutant phenotype was observed. These results suggest that silkworm molecular breeding using the CRISPR/Cas9 system is possible and could be an effective way of shortening the time required.