• Title/Summary/Keyword: 배수재 배치간격

Search Result 3, Processing Time 0.022 seconds

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Probabilistic Analysis and Design of the Spacing of Prefabricated Vertical Drains Considering Uncertainties in Geotechnical Property (지반 불확실성을 고려한 연직배수재 배치간격의 확률론적 해석과 결정)

  • Kim, Bang-Sig;Kim, Byung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.125-132
    • /
    • 2007
  • The oedometer, radial CRS and Rowe cell tests, composite discharge capacity tests and smear effect tests are carried out to estimate the parameters for the reliability-based design of vertical drain method. Also the sensitivity analysis, the probabilistic and deterministic solutions of radial consolidation theory are presented. The result of probabilistic analysis was compared to that of deterministic analysis using the tested and estimated parameters. The results indicated that the drain spacing in the deterministic method is larger than that in the probabilistic method because the former does not consider the uncertainties in the geotechnical property. The divergence of two methods is dependent on the probability of achieving target degree of consolidation by a given time and the coefficient of variation (COV) of the coefficient of horizontal consolidation ($c_h$).