• Title/Summary/Keyword: 배수문

Search Result 110, Processing Time 0.024 seconds

Development of Flood Routing Model in the Navigation Waterway to Support Operations of Weir and Flood Gate (가동보 및 배수문운영을 고려한 주운수로 홍수위 산정모형 구축)

  • Noh, Joon-Woo;Park, Myung-Ki;Shim, Myung-Geun;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.959-968
    • /
    • 2012
  • HEC-RAS has been applied to simulate water level variation in the Ara waterway during the flood season. To support decision making necessary for operation of the hydraulic structures especially during the flood season, it is important to consider various factors such as water level of the Han River, Gulpo River, and tidal level of the west sea in conjunction with operation of the hydraulic structures such as the Gyulhyun Weir, the West sea gate, and pumping stations. Especially for operation of the west sea gate, the Rule-script option was employed to determine the opening height considering the variation of the water level in the waterway and the west sea simultaneously. For model verification, comparison of water level computed at the upstream and downstream of the regulation weir shows a good agreement with observed data measured during the flood event in September 2010. The HEC-RAS model developed in this study will contribute to support operation of the waterway during the flood season.

A study for application plan of rational residual water pressure on the tunnel linings (터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토)

  • Jung, Kuk-Young;Kim, Ji-Yeop;Kim, Ji-Hun;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.463-499
    • /
    • 2011
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most tunnels are located under the ground water level. In case of a drainage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, residual pore water pressure can be developed on the lining due to the deterioration of the drainage system. In this study, the water pressure distribution under obstruction condition of drainage material and conduit on the tunnel is numerically investigated using the ICFEP program and compared with the current value being applied to the residual water pressure for rational application plan of residual water pressure on the tunnel linings.

A Study on the Pumping and Drainage Systems of the Floodplain at Daedong-myeon, Gimhae-si (김해시 대동면 범람원 지역의 양·배수 체계에 관한 연구)

  • HAN, Su-gyeong;SON, ILL
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The catch canal for a natural drainage, the excavation of tunnel for a stable irrigation, the artifical channelization of yazoo stream, many kinds of the pumping and drainage systems are found around Daedong-myeon, Gimhae-si. It could be confirmed that the deveolpment, maintenance and management of those facilities in the floodplain are mainly controlled by the geomorphological conditions. In case of Unha-chon, especially, the water can always be supplied only by openning the gate of irrigation tunnel and the Woldang pumping station as the largest pumping station in this area can supply water to Unha-chon area directly from the main river, Nakdong-gang. Because the Gamnae-chon which was an upper reach of the Unha-chon and is now connected to the Nakdong-gang through the Deoksan catch canal, the damage of flood and the burden of drainage are mitigated at the lower area of the Unha-chon.

Development of Flood Routing Model in the Ara Waterway Applying HEC-RAS (HEC-RAS를 적용한 아라천 홍수위산정모형 구축)

  • Noh, Joon-Woo;Lee, Sang-Jin;Park, Myung-Ki;Shim, Myung-Geunl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.409-413
    • /
    • 2012
  • 아라뱃길은 다양한 수리구조물의 조작을 통하여 선박운항 및 홍수처리가 이루어지며 유입홍수량, 한강수위, 그리고 서해조위 변동과 연계하여 귤현보, 서해배수문, 체절수문, 그리고 배수펌프장 등의 대표적인 구조물 운영을 지원할 수 있는 홍수위 계산모형이 필요하다. HEC-RAS모형은 이러한 수리구조물 운영을 효과적으로 경계조건으로 반영할 수 있는 장점이 있다. 특히 서해배수문의 경우 조위변동과 내수위를 동시에 고려한 수문운영이 필요하여 Rule-script기능을 적용하여 이러한 특성을 반영하였다. 모형의 검보정을 위하여 2010년 9월 홍수사상을 적용하였으며 모형으로부터 계산된 수위값과 관측된 수위값이 서로 잘 일치함을 확인하였다.

  • PDF

Analysis of the Discharge Capacity Improvement of a Lock Gate by Using 3-Dimensional Numerical Simulation (3차원 수치모의를 이용한 배수갑문의 방류능력 개선효과 분석)

  • Kim, Nam-Il;Kim, Dae-Geun;Lee, Kil-Seong;Kim, Dal-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.189-198
    • /
    • 2005
  • This study showed that numerical simulation can be effectively used to analyze discharge capacity according to the form and arrangement of the lock gate of a tidal power plant. For the numerical simulation, FLOW-3D with Reynolds-averaged Navier-Stokes equation as a governing equation was used. This study found that improvement of apron length and approach angle of guide wall of the lock gate causes differences in discharge capacity of $10\%$ or more. In addition, there was a difference of discharge capacity caused by the connecting structures of the drainage gate and hydraulic turbine structure and the side slope at the end of apron. This study also showed that hydraulic investigation to enhance a discharge capacity is needed when the lock gate is designed and that numerical model experiments can be a useful analysis tool to design the drainage structure, as well as the hydraulic model experiment.

Analysis of Outflow System at the Gilan River Basin (길안천 유역의 유출 체계 분석)

  • In Ho Oh;Eun Gyu Wang;Song I Moon;Kwon Dong Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.389-389
    • /
    • 2023
  • 우리나라는 농업 산업화의 발달로 인하여 농업용수, 공업용수, 생활용수 사용이 증가하며, 하천에서 직접 물을 취수하여 사용하고 있고 이용 후 생활용수, 농수로 등을 통해 회귀되는 유량이 많아 하천의 유출 특성을 파악하는데 어려움이 있다. 따라서 정확한 하천 유출 체계 특성을 파악하기 위해서는 하천에서 사용되는 물의 이용 특성에 대하여 파악할 필요가 있다. 본 연구에서는 길안천에 운영되고 있는 취수 시설에 대해 문헌조사와 현장조사를 진행하였으며, 조사한 자료를 토대로 하천의 물 사용 체계 모식도를 작성하였다. 길안천 유역의 조사 구간은 대사3교 하류에서 구)묵계교 상류까지 조사를 실시하였다. 문헌조사 대상시설은 취입보, 취수장 등이며, 조사대상은 하천의 유출특성에 영향을 줄 수 있는 시설로 길안천 유역에 영향을 주는 시설에 대해서만 수행을 하였다. 현장조사에서는 현장을 방문하여 취⋅배수시설의 위치 등을 조사하였다. 길안천은 농업용수와 생활용수 사용의 증가에 따라 상하류 측정유량의 반전이 빈번하게 발생하였으나 유출체계 분석을 통해 고려한 결과 안정적인 상하류 관계를 확인하였다. 결과적으로 본 연구를 통해 하천 내 취⋅배수시설 영향에 따른 유출 특성을 고려하여 자료를 검토한 결과 길안천 유역 내의 상하류 유량 반전 시기가 과거에 비해 감소하였으며, 안동시(대사3교)관측소와 안동시(묵계교)관측소 구간의 취⋅배수영향을 고려하여 산정한 유출률을 기존자료와 비교한 결과 일정한 손실고가 유지되는 안정적인 결과를 도출하였다.

  • PDF

Optimal design and operation of water transmission system (상수도 송·배수시스템의 최적 설계 및 운영 모형 개발)

  • Choi, Jeongwook;Jeong, Gimoon;Kim, Kangmin;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1171-1180
    • /
    • 2018
  • Korea's water transmission system is operated by the nonpressure flow method that flows from highlands to lowlands due to the nature of Korea with many mountainous areas. In order to store water in the highlands, the water pumps are installed and operated. However, In this process, a lot of electrical energy is consumed. therefore, it is necessary to minimize the energy consumption by optimizing the size and operation schedule of the water pumps. The optimal capacity and operation method of the water pump are affected by the size of the tank (distributing reservoir). Therefore, in order to economically design and operate the water transmission system, it is reasonable to consider both the construction cost of the water pump and the tank and the long-term operation cost of the water pump at the step of determining the scale of the initial facilities. In this study, the optimum design model was developed that can optimize both the optimal size of the water pump and the tank and the operation scheduling of the water pump by using the genetic algorithm (GA). The developed model was verified by applying it to the water transmission systems operated in Korea. It is expected that this study will help to estimate the optimal size of the water pump and the tank in the initial design of the water transmission system.

Characteristics of Drainage Pervious Block Considering Urban Rainfall (도심지 강우 특성을 고려한 투수성 보도블록의 배수 특성)

  • Seo, Da-Wa;Yun, Tae-Sup;Youm, Kwang-Soo;Jeong, Sang-Seom;Mun, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.53-64
    • /
    • 2015
  • This study presents the experimental results of pervious blocks subjected to a series of unique inflow conditions in urban area. The measured properties include the strength, permeability, drainage capacity and runoff, and evaporation for blocks made of two different size of aggregates. Results revealed that the strength satisfies the Korean Standard regardless of aggregate size whereas the immediate runoff occurred for the block with small size aggregate. On the other hand, the block with large aggregates allowed the drainage upon the initial inflow condition, which became hampered to induce the runoff by subsequent inflow. It was attributed to the fact that the capillary water often served as the hydraulic barrier in partially saturated condition. The salient observation indicated that the runoff highly depended on the evaporation and pre-wetting condition as well as the porosity and pore connectivity. The bilinear evaporate rate that makes the degree of saturation vary also had great influence on deterining the time-dependent runoff.