• Title/Summary/Keyword: 배선 시스템

Search Result 263, Processing Time 0.019 seconds

A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient (3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰)

  • Seo, Jung Nam;Na, Jong Eok;Bae, Sun Myung;Jung, Dong Min;Yoon, In Ha;Bae, Jae Bum;Kwack, Jung Won;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value. Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET. Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.