• Title/Summary/Keyword: 배분력방향 절삭깊이

Search Result 2, Processing Time 0.015 seconds

Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process (엔드밀링 공정의 형상창성기구에 의하여 절삭면적이 측벽 진직도 특성에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1269-1278
    • /
    • 2013
  • The cutting area changes periodically in the end-milling process because of its form generation mechanism. In this study, the effects of the cutting area on end-milled side walls are studied by developing a cutting area model that simulates the area formed by engagement between a workpiece and a cutting edge of the end mill. To do this, the straightness profile of the side wall in the axial direction is investigated. Models for estimating the cutting area and the transition point, where the slope of the straightness profile changes suddenly, are verified from real end-milling experiments under various radial and axial depth of cut conditions. Through this study, it is confirmed that the final end-milled side wall is generated in the regions where cutting areas are constant and decreasing in the down-cut. Similarly, in stable up-cut, it is also generated in the regions where cutting areas are increasing and constant. It is found that the transition point appears when the region changes.

A Study on the Cutter Runout Compensation by PI Control in End Mill Process (엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Lee, Ki-Yong;Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF