• Title/Summary/Keyword: 배낭문제

Search Result 51, Processing Time 0.023 seconds

DNA Computing adopting DNA Coding Method to solve Knapsack Problem (배낭 문제를 해결하기 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • 김은경;이상용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.243-246
    • /
    • 2004
  • 배낭 문제는 단순한 것 같지만 조합형 특성을 가진 NP-hard 문제이다 이 문제를 해결하기 위해 기존에는 GA(Genetic algorithms)를 이용하였으나 지역해에 빠질 수 있어 잘못된 해를 찾거나 찾지 못하는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 막대한 병렬성과 저장능력을 가진 DNA 컴퓨팅 기법에 DNA에 기반한 변형된 GA인 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optmization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 GA를 이용한 것 보다 초기 문제 표현에서 우수한 적합도를 생성했으며, 빠른 시간내에 우수한 해를 찾을 수 있었다.

  • PDF

Solution for Knapsack Problem using DNA Computing with Code Optimized DNA-Haskell (코드 최적화 DNA-Haskell을 도입한 DNA 컴퓨팅에 의한 배낭 문제 해결)

  • 김은경;이상용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.539-542
    • /
    • 2004
  • 배낭 문제는 조합 최적화 문제로서, 다항 시간(polynomial time)에 풀리지 않는 NP-hard 문제이다 이 문제를 해결하기 위해 기존에는 DNA 컴퓨팅 기법과 GA 등을 사용하여 해결하였다. 하지만 기존의 방법들은 DNA의 정확한 특성을 고려하지 않아, 실제 실험과의 결과 차이가 발생하고 있다. 본 논문에서는 DNA 컴퓨팅 실험 과정에서 발생하는 DNA 조작 오류를 최소화하고, 보다 정확한 예측을 위해 함수 언어인 Haskell을 이용한 코드 최적화 DNA-Haskell을 제안한다. 코드 최적화 DNA-Haskell은 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 DNA 컴퓨팅 방법보다 실험적 오류를 최소화하였으며, 또한 적합한 해를 빠른 시간 내에 찾을 수 있었다.

  • PDF

DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem (효과적인 배낭 문제 해결을 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim Eun-Gyeong;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.730-735
    • /
    • 2005
  • Though Knapsack Problem appears to be simple, it is a NP-hard problem that is not solved in polynomial time as combinational optimization problems. To solve this problem, GA(Genetic Algorithms) was used in the past. However, there were difficulties in real experiments because the conventional method didn't reflect the precise characteristics of DNA. In this paper we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to solve problems of Knapsack Problem. ACO was applied to (0,1) Knapsack Problem; as a result, it reduced experimental errors as compared with conventional methods, and found accurate solutions more rapidly.

An Concave Minimization Problem under the Muti-selection Knapsack Constraint (다중 선택 배낭 제약식 하에서의 오목 함수 최소화 문제)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.71-77
    • /
    • 2019
  • This paper defines a multi-selection knapsack problem and presents an algorithm for seeking its optimal solution. Multi-selection means that all members of the particular group be selected or excluded. Our branch-and-bound algorithm introduces a simplex containing the feasible region of the original problem to exploit the fact that the most tightly underestimating function on the simplex is linear. In bounding operation, the subproblem defined over the candidate simplex is minimized. During the branching process the candidate simplex is splitted into two one-less dimensional subsimplices by being projected onto two hyperplanes. The approach of this paper can be applied to solving the global minimization problems under various types of the knapsack constraints.

An Adaptive Policy for Stochastic Knapsack Problems: Parallel Rollout Approach (확률적 배낭 문제들에 대한 적응적 정책: 병렬 롤아웃 접근)

  • Choi, Sang-Hee;Chang, Hyeong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.445-450
    • /
    • 2007
  • 본 논문에서는 "확률적 배낭(stochastic knapsack)" 문제에 대하여 잘 알려진 Complete Sharing(CS), Complete Partitioning(CP)이 트래픽 특성에 따라 성능의 차이가 나타난다는 약점과 각 정책(policy)들의 평균 성능에 대한 최적 파라미터들을 트래픽 특성에 따라 결정하여야 한다는 약점을 보완하는 모델에 근거한 "Parallel Rollout(PR)"에 기초한 적응적인 정책(adaptive policy)을 제안한다. 주어진 트래픽 모델을 병합한 확률적 배낭 문제를 마코프 결정 과정(Markov Decision Process, MDP)으로 모델링하고, 마코프 결정 과정상에서 기존의 주어진 정책들을 PR 기법을 적용, 하나의 정책으로 융합하고 그 정책이 기존의 주어진 어떤 정책보다도 성능이 같거나 더 뛰어나다는 이론적 근거를 실험을 통하여 확인한다.

  • PDF

Integer Programming-based Local Search Techniques for the Multidimensional Knapsack Problem (다차원 배낭 문제를 위한 정수계획법 기반 지역 탐색 기법)

  • Hwang, Jun-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.13-27
    • /
    • 2012
  • Integer programming-based local search(IPbLS) is a kind of local search based on simple hill-climbing search and adopts integer programming for neighbor generation unlike general local search. According to an existing research [1], IPbLS is known as an effective method for the multidimensional knapsack problem(MKP) which has received wide attention in operations research and artificial intelligence area. However, the existing research has a shortcoming that it verified the superiority of IPbLS targeting only largest-scale problems among MKP test problems in the OR-Library. In this paper, I verify the superiority of IPbLS more objectively by applying it to other problems. In addition, unlike the existing IPbLS that combines simple hill-climbing search and integer programming, I propose methods combining other local search algorithms like hill-climbing search, tabu search, simulated annealing with integer programming. Through the experimental results, I confirmed that IPbLS shows comparable or better performance than the best known heuristic search also for mid or small-scale MKP test problems.

A Lagrangian Heuristic for the Multidimensional 0-1 Knapsack Problem (다중 배낭 문제를 위한 라그랑지안 휴리스틱)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.755-760
    • /
    • 2010
  • In general, Lagrangian method for discrete optimization is a kind of technique to easily manage constraints. It is traditionally used for finding upper bounds in the branch-and-bound method. In this paper, we propose a new Lagrangian search method for the 0-1 knapsack problem with multiple constraints. A novel feature of the proposed method different from existing Lagrangian approaches is that it can find high-quality lower bounds, i.e., feasible solutions, efficiently based on a new property of Lagrangian vector. We show the performance improvement of the proposed Lagrangian method over existing ones through experiments on well-known large scale benchmark data.

A Study on the IT Project Selection Considering Budget Constraints (예산제약을 고려한 IT프로젝트 선정 모델 연구)

  • Park, Jaehee;Cho, Nam-Wook;Kim, Wooje
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.327-338
    • /
    • 2013
  • Effective and efficient selection of IT projects is crucial for company's competitiveness. The selection of IT projects usually involves consideration of budget constraints but existing IT project selection models often neglect budget constraints. This paper presents an IT project selection model which considers budget constraints. AHP(Analytic Hierarchy Process) and Knapsack problem model have been combined to develop the proposed model, AHP-K model, where AHP is used to estimate weights of selection criteria and, then, a knapsack problem model is utilized to optimize selection of IT project while meeting the budget constraints. In this paper, a case study is provided to validate the effectiveness of the proposed AHP-K model. It has been shown that the proposed AHP-K model is better than the AHP model in terms of total utility of projects and investment efficiency.

Development of Knapsack Problem Solver Using Relational DBMS (관계형 데이터베이스를 이용한 배낭문제 해법기의 구현)

  • 서창교;송구선
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.2
    • /
    • pp.73-73
    • /
    • 1988
  • Knapsack problems represent many business application such as cargo loading, project selection, and capital budgeting. In this research we developed a knapsack problem solver based on Martello-Toth algorithm using a relational database management system on the PC platform. The solver used the menu-driven user interface. The solver can be easily integrated with the database of decision support system because the solver can access the database to retrieve the data for the model and to store the result directly.

Development of knapsack problem solver using relational DBMS (관계형 데이터베이스를 이용한 배낭문제 해법기의 구현)

  • 서창교;송구선
    • Korean Management Science Review
    • /
    • v.13 no.2
    • /
    • pp.73-94
    • /
    • 1996
  • Knapsack problems represent many business application such as cargo loading, project selection, and capital budgeting. In this research we developed a knapsack problem solver based on Martello-Toth algorithm using a relational database management system on the PC platform. The solver used the menu-driven user interface. The solver can be easily integrated with the database of decision support system because the solver can access the database to retrieve the data for the model and to store the result directly.

  • PDF