• Title/Summary/Keyword: 배기플룸

Search Result 23, Processing Time 0.015 seconds

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

A Study on Nozzle Performance Influence with Aft-deck Geometry (Aft-deck 형상에 의한 노즐 성능 영향성 연구)

  • Lee, Changwook;Park, Youngseok;Jin, Juneyub;Kim, Jaewon;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.42-54
    • /
    • 2021
  • The Aft-deck is being applied to the latest unmanned aircraft for the purpose of shielding the gas turbine exhaust plume or spreading jets to increase the mixing rate with the ambient air, thereby reducing the temperature of exhaust gases. In this study, we would like to find out how the performance of the nozzle is affected by the design variables of the Aft-deck. The design variables of aft-deck are selected as length, expansion angle and upper deck shape. The correlation between thrust and plume shielding rate with the length variable is presented. And the correlation between the thrust and the jet diffusion range is presented according to the expansion angle. In addition, the thrust increase effect is confirmed by the removal of the upper deck and the characteristics of transverse velocity vector determined mixing performance with external flow.

Computational and Experimental Investigation of Thermal Flow Field of Micro Turbojet Engine with Various Nozzle Configurations (노즐 형상 변경에 따른 마이크로 터보제트 엔진의 열유동장에 관한 전산해석 및 실험적 연구)

  • Lee, Hyun-Jin;Lee, Ji-Hyun;Myong, Rho-Shin;Kim, Sun-Mi;Choi, Sung-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2018
  • Numerical simulation and experimental study on the thermal flow field of the micro turbojet engine have been carried out for the purpose of developing infrared reduction technology for aircraft. A circular basic nozzle and five rectangular nozzles with different aspect ratio were considered. The conditions for CFD analysis were derived from the analysis of the engine performance. The temperature distribution of the nozzle plume was measured using a temperature sensing system. The thrust of the rectangular nozzle with the aspect ratio 5 was reduced about 1.8% compared to the circular nozzle, and the thrust decreased with increasing the aspect ratio of the nozzle. In the case of thermal flow field, it was observed that, as the aspect ratio increases, the exhaust plume in the experiment was formed wider than in the CFD analysis.