• Title/Summary/Keyword: 배관 소음

Search Result 194, Processing Time 0.028 seconds

Screening Method for Flow-induced Vibration of Piping Systems for APR1400 Comprehensive Vibration Assessment Program (APR1400 종합진동평가를 위한 배관시스템의 유동유발진동 간이평가)

  • Ko, Do-Young;Kim, Dong-Hak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.599-605
    • /
    • 2015
  • The revised U.S. Nuclear Regulatory Commission(NRC), Regulatory Guide(RG) 1.20, rev.3 requires the evaluation of the potential adverse effects from pressure fluctuations and vibrations on piping and components for the reactor coolant, steam, feedwater, and condensate systems. Detailed vibration analyses for the systems attached to the steam generator are very difficult, because these piping systems are very complicated. This paper suggests a screening method for the flow-induced vibration of acoustic resonances and pump-induced vibration of the piping systems attached to the steam generator in order to conduct the APR1400 comprehensive vibration assessment program. This paper seeks to address the areas such as potential vibration sources, and methods to prevent the occurrence of acoustic resonances and pump-induced vibration of piping systems attached to the steam generator, for conducting the APR1400 comprehensive vibration assessment program. The screening method in this paper will be used to estimate the flow-induced vibration of the piping systems attached to the steam generator for the APR1400.

Prediction Method of Control Valve Noise (잔향실을 이용한 콘트롤 밸브 소음 예측 방법)

  • 이용봉;윤병로;박경암;이두희;유선학
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.703-707
    • /
    • 2002
  • This paper proposes new method for predicting sound power emitted from the control valve and piping system. The sound power level measurement method using the reverberation chamber is much easy to apply in the field compared to the method using the anechoic chamber. Measured sound power was used to determine the coefficients of the equation predicting sound power level. The noise prediction equation was developed at relative flow coefficient, 0.11. The sound power level predicted is in good agreement with the measured value. Proposed method can be used to express the noise characteristics of the control valves.

Experimental Study on the Noise Reduction of Drainage Pipe by a kind of Curve Pipe (곡관 종류에 따른 배수관내의 소음 저감에 관한 실험적 연구)

  • Kim, Jeong-Hoon;Shim, Dong-Hyouk;Kim, Kyoung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.187-192
    • /
    • 2006
  • The effect where the multiple sound arrest ing goes mad to the human being does the zone. From like that cotton, this dissertation the both sides flag executed the research regarding a sound arresting reduction in the object in one example. It compared the piping structure which generally is space-time and a specific piping structure and it tested and research and the modeling regarding a sound arresting reduction the simulation which leads and it executed result and comparison of existing it analyzed. The duplication where the reduction effect is bigger the result general VG2 piping structure than escape it did with the fact that it appears the large effect the piping structure which it connects. Also, the straight pipe effect of multiple sound arresting could not go mad with the fact that.

  • PDF

Prediction of Two-phase Flow Patterns and Noise Evaluation for Evaporator Pipe in a Refrigerator (냉장고 증발기 배관의 2상유동양식 예측 및 소음 평가)

  • Heo, So-Jung;Kim, Min-Seong;Han, Hyung-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.916-923
    • /
    • 2011
  • The refrigerant after the expansion valve interchanges the heat at the evaporator. At this moment, the state of gas and liquid becomes two-phase flow and causes irregular noise. In order to avoid the noise, the two-phase flow pattern should be predicted. In this paper, the procedure to predict the two-phase flow patterns such as churn flow and annular flow was suggested using the CFD software. The experiments using refrigerant-supplying equipment was carried out and the noise levels according to the flow pattern were measured. The flow patterns predicted by this procedure showed good agreement with those by experiments. The churn flow is noisier than annular flow pattern.

Rating of Noise Emission by Plumbing system in Bathroom (화장실 배수관에 따른 배수소음 평가)

  • 정진연;이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.923-927
    • /
    • 2003
  • The aim of this study is to investigate the characteristics and quantity of the noise reduction by pipe material, wrapped pipe with glass wool and installed pipe height The characteristics of noise emission from drain-pipes is as follows. The noise reduction pipe in PVC can reduce noise levels in 7-10㏈ and the cast-iron pipe can reduce in 14㏈compared with the normal PVC pipe. In these days, the glass wool was used for preventing the burst and the noise reduction. But the glass wool for wrapping pipe is not effective to the noise reduction. The characteristics of noise emission from various installed pipe height were measured As the ceiling space of the remodeled building was raised, the noise level was troubled by increasing of the vertical pipe length.

  • PDF

Characteristics of Reducing the Water-drainage Noise of Toilet-bowl According to the Composition of Water Drainage Piping Materials of the Bathrooms of Apartment Housing (공동주택 욕실 배수배관 자재 구성에 따른 양변기 배수소음 저감 특성)

  • Jeong, A-Yeong;Kim, Kyoung-woo;Shin, Hye-kyung;Yang, Kwan-seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • Water supply and drainage noise in the bathroom is recognized as one of the main noises, along with the floor-impact sounds, in apartment housings. Recently, to solve such noise issues, a new construction method of installing the piping on the slab has been adopted. rather than the traditional method of penetrating the piping through the slab between the upper and the lower bathrooms. However, this new method has limitations due to high costs and constructional difficulties. Therefore, this study was conducted to develop noise reducing piping and elbows, where the noise can be reduced simply by replacing the existing pipings. The noise level was measured in a laboratory by installing the horizontal drainage piping (three types) and the elbows (three types) developed in this study. The results showed that the horizontal pipings reduced the noise level in LAmax by 0.3 dB(A)~1.0 dB(A), as compared to the existing pipings (VG2), indicating an insignificant noise reduction effect. The elbow reduced the noise level in LAmax by 5.5 dB(A) ~ 11.5 dB(A), as compared to the existing elbow (DRF elbow), with the result of reducing the noise level at all frequencies evenly. Consequently, it was shown that using the elbows is more effective in reducing the water-drainage noise from the toilet than using the horizontal pipings.

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

Comparison of Window Functions for the Estimation of Leak Location for Underground Plastic Pipes (지하매설 플라스틱 배관의 누수지점 추정을 위한 창함수 비교 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.568-576
    • /
    • 2010
  • It is widely known that the leak locating of underground plastic pipelines is much more difficult than that of cast iron pipelines. The precision of the leak locating depends upon the speed of leak signal and the time delay estimation between the two sensors on the pipeline. In this paper, six different windowing filters are considered to improve the time delay estimation especially for the plastic pipelines. The time delay is usually estimated from the peak time of cross-correlation functions. The filtering windows including rectangle, Roth, Wiener, SCOT, PHAT and maximum likelihood are applied to derive the generalized cross-correlation function and compared each other. Experimental results for the actual plastic underground water supply pipeline show that the introduction of the filtering windows improved the precision of time delay estimation. Some window functions provide excellent leak locating capability for the plastic pipe of 98 m long, which is less than 1 % of the pipe lengths. Also a new probabilistic approach that the combinations of all results from each filtering window is suggested for the better leak locating.