• Title/Summary/Keyword: 방호.방폭

Search Result 20, Processing Time 0.023 seconds

A Study on the Method for Judging the Required Protection Capacity through Decision Making (의사결정론을 통한 방호요구수준 판단방안 제시에 관한 연구)

  • Lee, Sung-Hak;Park, Sang-Woo;Baek, Jang-Woon;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.167-174
    • /
    • 2019
  • Protective facilities are the last means of ensuring the survivability of personnel and assets, and there is a greater amount of matters to consider than those of general buildings. However, the Defense Military Facilities Criteria and the Ministry of the Interior and Safety, Ordinance No. 20, are only considering the expected enemy threats. In this study, we use objective and statistical methods to refine the consideration of the required capacity of protection based on the opinions of the experts. Specifically, the study adopts the Delphi technique associating the experts related to 30 defense military facilities criteria. The first-round questions were open-ended, and it compiled the points to consider related to the bulletproof and explosion - proof design. The second questionnaire was applied as closed questionnaire with 7 points scale methods. As a result of the factor analysis on the opinions of the experts, it was confirmed that the protection requirement level was due to METT + TC.

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

Evaluation of Pressure Effects on Blast Valves for Facility Protection of Underground Computing Center (지하 전산센터의 시설보호를 위한 방폭밸브에 미치는 폭압 평가)

  • Pang, Seung-Ki;Shin, Jin-Won;Kim, Wae-deuk
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • This paper presents two-step simulations to calculate the influence of blast-induced pressures on explosion-protection valves installed at the boundary between a protection facility and a tunnel entering the facility. The first step is to calculate the respective overpressure on the entrance and exit of the tunnel when an explosion occurs near the tunnel entrance and exit to approach the protection facility. Secondly, the blast pressures on the explosion-protection valves mounted to walls located near the tunnel inside approaching the protection facility are analyzed with a 0.1 ms time variation using the results obtained from the first-step calculations. The following conclusions could be derived as a results: (1) The analysis of the entrance tunnel scenario, P1, leads to the maximum overpressure of 47 kPa, approximately a half of the ambient pressure, at the inner entrance due to the effect of blast barrier. For the scenario, P2, the case not blocked by the barrier, the maximum overpressure is 628 kPa, which is relatively high, namely, 5.2 times the ambient pressure. (2) It is observed that the pressure for the entrance tunnel is effectively mitigated because the initial blast pressures are partially offset from each other according to the geometry of the entrance and a portion of the pressures is discharged to the outside.

Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting (철근콘크리트 패널의 FRP 보강에 의한 방폭 성능 향상에 관한 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Kim, Sung-Bae;Choi, Jong-Kwon;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Recently, FRP usage for strengthening RC structures in civil engineering has been increasing. Especially, the use of FRP to strengthen structures against blast loading is growing rapidly. To estimate FRP retrofitting effect under blast loading, blast tests with nine $1,000{\times}1,000{\times}150\;mm$ RC panel specimens, which were retrofitted with carbon fiber reinforced polymer (CFRP), Polyurea, CFRP with Poly-urea and basalt fiber reinforced polymer (BFRP) have been carried out. The applied blast load was generated by the detonation of 15.88 kg ANFO explosive charge at 1.5 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included central deflection and strains at steel, concrete, and FRP surfaces. The failure mode of each specimen was observed and compared with a control specimen. From the test results, the blast resistance of each retrofit material was determined. The test results of each retrofit material will provide the basic information for preliminary selection of retrofit material to achieve the target retrofit performance and protection level.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.

Influence of Addition Timing and Dosage of ERCO on Autogenous Shrinkage and Fundamental Properties of HPFRCC (ERCO 혼입시기 및 혼입율 변화가 HPFRCC의 자기수축저감 및 기초적 특성에 미치는 영향)

  • Han, Cheon-Goo;Lee, Je-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.313-319
    • /
    • 2018
  • For the entire world, due to the increased risks of explosion and terrorisms, damages on human life and properties have been increased. Regarding this issue, research on high performance fiber reinforced cementitious composite (HPFRCC) with the protecting performance for the building structures or military facilities against explosion or bombing has been increased (important). Among a series of the research, using emulsified refined cooking oil(ERCO) to reduce the autogenous shrinkage may cause some adverse effect on performance of the mixture such as increased viscosity, decreased fluidity, air content, and strength. Hence, in this research, based on the optimum design of HPFRCC induced by previous research, the influence of ERCO adding timing and dosage on autogenous shrinkage and fundamental properties were analyzed. As a result, it was revealed that 0.5% of ERCO should be added right after the mixing is most effective for the quality of HPFRCC such as fluidity, strength development and autogenous shrinkage reducing.

Fundamental Properties and Reduction of Autogenous Shrinkage of HPFRCC Depending on Various Fiber Contents and ERCO Dosages (섬유 및 ERCO 혼입율 변화에 따른 HPFRCC의 기초적 특성 및 자기수축 저감)

  • Jo, Sung-Jun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, because of the terrorisms or warfare, the damages of human life or facilities have been increased. Hence, the Korean government launched the research group for high performance fiber reinforced cementitious composite (HPFRCC) with increased demanding on protecting and anti-explosive structures. Therefore, in this research, to apply the HPFRCC on military facilities with optimum performance on workability and performance, the fundamental properties and reduction of autogenous shrinkage of HPFRCC with various combinations of steel and organic fiber and emulsified refined cooking oil (ERCO) were evaluated. As a result, based on the comprehensive analysis, for favorable workability, strength, and autogenous shrinkage, 1.5 % of combined fiber of short steel fiber and long organic fiber and 0.5 % of ERCO was suggested as an optimum conditions.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.