• Title/Summary/Keyword: 방호 최적화

Search Result 31, Processing Time 0.023 seconds

A Study on the Implementation of Dose Constraints in Occupational Dose According to ICRP 103 Recommendations in Korea (ICRP신권고에 따른 직무피폭에서의 선량제약치 국내 적용 방안 연구)

  • Kim, Yong-Min;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • In 2007, the International Commission on Radiological Protection (ICRP) published Recommendations of the International Commission on Radiological Protection. Accordingly IAEA safety standards committees have reviewed and revised the BSS. The process of the implementation of the ICRP 103 into Korean radiation protection regulations has been continued. Although the new recommendations retain the fundamental protection principles, the impact of the new ICRP recommendations will necessarily be greater than ever before. ICRP recommends the application of dose constraint in planned situations and reference level in existing & emergency situations for strengthening of the principle of optimization. Dose constraints and reference level play a criterion on the level of individual dose as prospective and source-related values. Therefore it is necessary to apply dose constraints and reference levels to all nuclear and RI&RG facilities in Rep. of Korea. Dose constraints and reference level of occupational exposure will be set-up by the stakeholder itself with the cooperation of regulatory body. In this study, the implementation method was discussed to apply the dose constraints and reference level as the procedure for the optimization, not the tool of the regulation.

Considerations on the Concept of Dose Constraint (선량제약 개념에 대한 고찰)

  • Chang, Si-Yeong;Chung, Kyeong-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.329-338
    • /
    • 1996
  • 최근에 우리나라가 공식 회원국으로 가입한 서방 경제협력개발기구(OECD)/원자력기구(NEA) 산하의 방사선 방호 및 보건위원회(CRPPH)에서는 유럽연합(EC)의 전문가그룹과 합동으로 국제방사선방호위원회(ICRP)의 권고 60의 방사선 방호 최적화 원칙에 공식적으로 도입된 이른 바 '선량제약(dose constraint)' 개념에 대한 위원회의 논의 및 검토결과를 OECD/NEA의 공식보고서로 발간하였다. 이 보고서는 선량제약의 개념과 의미를 논리적으로 합리화하기 위하여 발간된 것이다. 선량제약이란 용어와 개념은 새로워 보이지만 실상은 전혀 새로운 것이 아니다. 우리나라에서도 방사선 방호의 실무현장에서 용어나 의미는 조금 다르다 할 수 있어도 이 개념을 부분적으로 적용해왔다고 할 수 있다. 예를 들어, 선량한도 이하의 낮은 선량으로 작업자의 피폭을 제한하기 위하여 도입된 '연간 선량목표치' 또는 '방사성 물질의 방출목표관리치' 등이 여기에 해당될 것이다. 따라서, OECD/NEA의 공식보고서를 번역한 이 해설논문이 국내의 방사선 방호분야에서 활약하고 있는 정책 입안자, 연구자, 규제업무자, 방사선 관리실무자 등 방사선 방호 업무분야의 관련자들에게 도움이 되었으면 한다.

  • PDF

An Analytical Methodology for Evaluating Radiological Protection Alternatives Using Analytical Hierarchy Process (계층화 의사결정법을 이용한 방사선방호선택 대안결정에 관한 해석적 방법론)

  • Sa, Sang-Duk;Narita, Masakuni
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 1994
  • This study aims to introduce a prescriptive methodology to comprehensively support the analysis of decision process by the use of Saaty's Analytical Hierarchy Process for the optimization of radiation protection. The analytical Hierarchy Process for the optimization of radiation protection. The analytical process for the problem of selecting options among given protection alternatives is illustrated with the data of the uranium mine example in ICRP Publ. 55. This technique, unlike other conventional selection method, is considered to provide a useful tool for the protection manager with respect to its ease of use and simplification in the choice of optimal alternative associated with radiological protection.

  • PDF

전투장갑차의 수상운행을 위한 신개념 부양장치 연구

  • Choe, Yun-Sang
    • Defense and Technology
    • /
    • no.3 s.289
    • /
    • pp.58-65
    • /
    • 2003
  • 접이식 방호부양장치체계 설계안은 전투장갑차의 부양장치로서 요구되는 부력, 방호성, 독자적 수상운행성을 위한 탑재운용성, 수상운행 준비시간을 최소화하는 구동장치의 최적화 및 수상안정성 극대화 등을 충족시키면서도 중량 증가 요인은 최소화하는 것이 가능할 것으로 검토된 바, 기존 방법으로는 기대할 수 없는 높은 수준의 수상운행성능 구현이 가능할 것으로 기대된다.

  • PDF

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Fire Protection Regulations for Ensuring Fire Safety during Decommissioning Nuclear Power Plants in Korea (해체원전 화재안전 확보를 위한 화재방호 규정 고찰)

  • Kim, Jung-Wun;Park, Chan-Geun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.134-140
    • /
    • 2020
  • Nuclear power plants (NPPs) in Korea are required to be maintained using a defense in-depth approach to prevent leakage of radioactive substances outside the plant and allow safe shutdown in the event of a fire. Periodic testing must be conducted to ensure that the fire protection facilities perform as required by the laws for various nuclear reactor types. In June 2017, for the first time in Korea, a nuclear plant, Kori Unit 1, was permanently shut down. It was prepared for decommissioning in accordance with the fire protection regulations imposed by the regulatory body. However, a standard protocol is necessary for systematically establishing the fire protection program for decommissioning of NPPs in the future. Therefore, the nuclear legal systems of countries with many operating nuclear power plants, such as the United States, Japan, Canada, and various European countries, were reviewed and guidelines for establishing a fire protection program for decommissioning NPPs was suggested; the fire protection requirements stated by Reg Guide 1.191 (Decommissioning fire protection program for NPPs during decommissioning and permanent shutdown) were used as a model. Suggestions for establishing legal regulations to optimize fire protection programs and secure basic technology for decommissioning NPPs were also made.

Multidimensional Model for Assessing Risks from Occupational Radiation Exposure of Workers (직업상 피폭에 따른 방사선 위험성 평가를 위한 다차원적 모델)

  • Bae, Yu-Jung;Kim, Byeong-soo;Gwon, Da-yeong;Kim, Yong-min
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.555-564
    • /
    • 2017
  • The current radiation risk assessment for occupational exposure is based on the measured exposure dose and health checkups of workers. This people-centered risk assessment may occur errors because absence of using personal dosimeter or unrelated health symptoms of individuals lead to difficulties in obtaining accurate data from workers. In addition, although the established legal upper dose limit was used as a reference for the assessment, it does not imply that this limit is the optimal dose of radiation workers should get; ALARA principle should always be appreciated. Therefore, a new risk assessment model that can take account of all the important factors and implement optimization of radiation protection is required at the national level. In this paper, based on the KOSHA Risk Assessment, we studied on the workplace-centered risk assessment model for radiation field rather than the people-centered. The result of the study derived a right model for radiation field through the analysis of the risk assessment methods in various fields and also found data acquisition methods and procedures for applying to the model. Multidimensional model centering on the workplace will enables more accurate radiation risk assessment by using a risk index and radar plot, and consequently contribute to the efficient worker management, preemptive worker protection and implementation of optimization of radiation protection.