평면센서배열을 사용하는 소나시스템에서 송수신빔을 수평, 수직방향으로 분리하여 형성할 수 있다면, 빔형성에 필요한 연산량과 공간을 줄일 수 있는 장점들이 있다. 하지만 일반적으로 소나시스템에서 사용되는 평면센서배열은 공간상 수평, 수직방향으로 분리되지 않는다. 따라서 기존의 수평, 수직방향 분리 가중치를 이용하여 송수신빔을 분리하여 형성하면 목표로 하는 수평, 수직 빔 특성과 차이가 발생된다. 본 논문에서는 공간상 분리가 되지 않는 평면센서배열에 대해 효과적으로 분리된 수평, 수직 가중치를 적용하여 목표로 하는 수평, 수직 빔 특성을 얻기 위한 새로운 기법을 제안하였다. 제안한 기법은 평면센서 배열의 수평, 수직방향으로 영향을 미치는 유효센서수를 구해 분리된 수평, 수직 가중치에 적용시킨다. 이를 통해 목표로 하는 수평, 수직 가중치의 오차 합이 최소화되도록 반영시킴으로써 각 방향으로 목표로 하는 빔 특성을 가지도록 한다.
Histogram of oriented gradient (HOG) 특징은 영상 기반 보행자 인식에서 널리 사용되고 있다. HOG 특징을 이용한 보행자 인식의 인식률을 높이는데 가장 중요한 역할을 하는 것은 보간 기술이다. HOG 특징 연산에 보간 기술을 적용하기 위해서는 각 픽셀의 기울기 방향에 가장 근접한 두 개의 기울기 방향 bin과 가중치를 계산해야 한다. 따라서 본 논문에서는 HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로를 제안한다. 제안하는 회로는 탄젠트 함수와 나눗셈 연산을 피하기 위해 미리 계산된 값을 테이블로 지정하여 사용하였으며, 탄젠트 함수와 가중치 값의 특성을 이용함으로써 회로 내 테이블의 크기를 최소화하였다. 또한 처리 속도 향상을 위해 파이프라인 구조를 적용하였으며, 효율적인 coarse 및 fine 탐색 방법을 적용하여 각 픽셀에 대한 기울기 방향 bin과 가중치를 두 클락 사이클 내에 계산한다. 본 논문에서 제안하는 회로는 $1^{\circ}$ 단위로 기울기 방향을 계산하여 기울기 방향 bin과 가중치를 모두 결정하기 때문에 HOG 특징을 위한 보간 기술에 적용되어 높은 인식률을 제공하기 위해 사용될 수 있다.
본 논문에서는 신경회로망의 수렴속도를 높이기 위한 알고리즘을 제안한다. 전형적인 역전파 학습방식은 느린 수렴속도가 단점으로 제기되는데 이는 비용함수의 계곡부근에서 가중치의 궤적이 심한 진동현상을 보이기 때문이다. 이 문제를 해결하기 위해서 본 논문에서는 경사법에서 사용되는 갱신방향을 계곡의 진행방향을 이용하여 변경한다. 모의실험을 통하여 제안된 방법으로 가중치의 궤적에 나타나는 진동을 줄이고 수렴속도를 향상시킬 수 있음을 보인다.
본 논문에서는 가중치 및 방향성 워크플로우 소셜네트워크의 사이중심도 분석방법과 그에 따른 알고리듬을 제안한다. 기존의 워크플로우 소셜네트워크는 워크플로우 모델을 구성하는 단위업무를 처리하는 과정에서 수행자들간의 업무전달관계 유무를 이진 소셜네트워크 모델로 표현한 것이다. 그러나, 워크플로우 기반 조직을 구성하는 수행자들간의 업무전달관계를 효과적으로 분석하기 위해서는 기존의 수행자들간의 관계유무를 기본으로 하는 이진 소셜네트워크 정보 뿐 만 아니라 수행자들간의 정량적 업무전달관계와 그 업무전달관계의 방향성 또한 효과적인 분석결과를 획득하는데 있어서 매우 중요한 요인이다. 결과적으로, 본 논문에서는 수행자 그룹의 효과적인 업무전달관계 분석을 수행하기 위하여 정량적 업무전달관계 수준과 그의 방향성을 고려한 가중치 및 방향성 워크플로우 소셜네트워크 개념과 수행자 그룹의 사이중심도 분석방법 및 알고리듬을 제안한다. 특히, 제안한 분석방법을 검증하기 위하여 기존의 이진 워크플로우 소셜네트워크에 대한 사이중심도 분석방법과 본 논문에서 제안한 가중치 및 방향성 워크플로우 소셜네트워크에 대한 사이중심도 분석방법을 특정 워크플로우 모델에 적용하여 그 분석결과를 비교한다.
중력 방향에 대한 가중치를 적용한 3축 가속도 센서 데이터를 낙상 특징 변수로 사용해서 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 기존에 낙상인식에 많이 사용되는 변수인 3축 가속도의 벡터 합(Sum Vector Magnitude, SVM)과 새롭게 정의한 변수인 중력방향가중치를 적용한 3축 가속도의 벡터 합(Gravity-weighted Sum Vector Magnitude, GSVM)를 포함한 다섯 가지 낙상특징변수를 은닉 마르코프 모델에 적용하여 낙상 인식률을 평가하였다. 실험을 통해 얻은 가장 좋은 결과는 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수를 적용한 결과이고 100% 민감도(sensitivity)와 97.96% 특이성(specificity)를 얻었다. 이것은 단순 3축 가속도의 벡터 합 변수에 비해 민감도는 5.2%와 특이성은 4.5% 정도 향상되었다. 단순히 운동량만을 표현하는 3축 가속도의 벡터 합 변수에 비해 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수가 낙상의 움직임에 대한 특징을 잘 표현하기 때문에 높은 인식률을 나타내었다.
본 논문은 칼라 필터 배열(color filter array : CFA) 영상에서 채널 간 상관관계를 이용한 새로운 에지 방향 컬러 보간 방법을 제시하였다. 고정 채널 간 컬러 차 가정에 따라 휘도와 색차간의 차가 큰 경우 에지 영역이라 판단한다. 에지 방향 판별을 정확히 하기 위해 수평, 수직 방향으로 컬러 차 영상을 구하고, 구한 영상에서 변화량을 계산하여 에지 방향 판별 기준으로 사용한다. 에지 판별 기준을 사용하여, 에지 방향에 따라 컬러 보간을 수행한다. 평탄 영역은 이웃 화소와의 유사성에 따라 가중치를 다르게 줘서, 이웃 화소의 가중치 합으로 구한다 실험 결과는 제안하는 알고리즘이 기존 알고리즘 보다 우수함을 보여준다.
Deinterlacing은 비월 주사 영상을 순차 주사 영상으로 변환하는 방법을 뜻하며 2배의 영상 보간 문제로 볼 수 있다. 본 논문에서는 보간하려는 화소의 국부 Gradient 정보를 이용한 간단하면서도 효율적인 deinterlacing 방법을 제안한다. 제안 방법에서는 보간하려는 화소를 중심으로 각 방향별 가중치가 추정되며 이 가중치에 따른 평균으로 보간 할 화소의 밝기값이 결정된다. 제안 방법에서는 모든 방향에 대한 가중치를 고려함으로써 잘못된 방향 판단으로 인한 화질 열화를 피하였고 실제적인 구현에 적합한 구조를 가지고 있다. 모의실험에서 제안 방법은 대표적인 방향성 deinterlacing 방법인 ELA보다 개선된 주관적, 객관적 성능을 보여주었으며 복잡한 구조와 여러 개의 경험적인 파라미터들을 요구하는 ELA의 변형에 대해서도 대등한 성능을 보여주었다.
본 논문은 기존 위치기반 서비스에서 최근접질의 및 한 지점에서의 방향성분을 고려한 최근접질의의 단점을 해소하고자 가중치 벡터합을 이용하는 새로운 검색방법을 제안한다. 검색반경으로 1차 필터링된 영역에서, 2차 필터링을 위해 이용자의 이동방향, 관심방향 및 검색각도를 조합한 방향정보를 이용한다. 이동방향은 일정구간내 존재하는 벡터들의 가중치 합으로 계산하며, 검색각도를 $0{\sim}360^{\circ}$까지 세분화하여 검색방향에 대한 범위를 조절 하도록 한다. 본 검색방법에 사용되는 데이터는 촬영위치가 기록된 정지영상 및 동영상, 업체나 관광지의 위치정보와 함께 소비자에게 제공되는 텍스트, 웹, 영상 등 각종 미디어 형태의 데이터가 될 수 있다. 제안하는 방법은 이동 중인 이용자가 현 위치를 기준으로 일정 반경 내에 있으면서 유사방향에 부합하는 미디어만을 검색하도록 함으로써, 이미 지났거나 혹은 관련 없는 방향의 미디어를 배제한 검색결과를 제공하기 때문에 기존의 위치만을 고려한 검색방법에 비해 보다 정확한 검색을 보장할 수 있으며, 방향성을 고려한 기존 최근접질의 에 비해서도 보다 유연하고 포괄적인 검색결과를 보장한다.
그래프를 사용하는 데이터 표현법은 직$\cdot$간접적으로 실세계를 표현하는 다양한 데이터 모델 중에서 가장 일반화된 방법으로 알려져 있다. 기본적으로 그래프는 정점과 간선으로 구성되며, 정점과 간선은 그 중요도나 운영 목적에 따라 다양한 가중치가 부여될 수 있다. 특히, 이러한 그래프를 순회하는 트랜잭션들로부터 중요한 순회패턴을 탐사하는 것은 흥미로운 일이다. 본 논문에서는, 정점과 간선에 가중치가 있고 방향성을 가진 기반 그래프가 주어졌을 때, 그 그래프를 순회하는 트랜잭션들로부터 가중치를 고려하여 빈발 순회패턴을 탐사하는 방법을 제안한다. 또한, 이렇게 탐사한 결과에 가중치를 고려한 중요도를 평가하여 빈발 순회패턴들 간의 우선순위를 결정할 수 있도록 한다. 이 과정에서 발생할 수 있는 트랜잭션 노이즈는 기반 그래프의 간선 가중치의 평균과 표준편차를 이용하여 제거함으로써 보다 신뢰성 있는 빈발 순회패턴을 탐사할 수 있다. 제안한 논문은 웹 로그 마이닝 등 그래프를 이용하는 다양한 응용 분야에 적용할 수 있을 것이다.
DTV Full HD급이 보편화되면서 LCD(Liquid Crystal Display)의 잔상효과 제거와 격동적인 화면에서의 고화질 구현을 위해 수신 단에서 후처리 과정으로 움직임 보상 기반 프레임 보간(MCFI)이 사용되고 있다. MCFI는 움직임 정보를 이용하여 삽입될 화면을 보간하는데 이러한 움직임 정보를 후처리 없이 바로 사용하는 건 많은 열화 현상 및 보간 된 물체의 구조 변형 결과를 초래한다. 이에 본 논문에서는 움직임 벡터 후처리 가법으로서 에지 방향 정보기반 가변 가중치 벡터 중앙값 필터를 이용하여 움직임 벡터 처리 기법을 제안한다. 제안한 움직임 벡터 처리 가법은 먼저 소벨 마스크와 가중치 최대빈도필터를 통해 에지 정보맵을 생성한다. 그리고 $3{\times}3$ 윈도우 내 움직임 벡터들의 중앙값을 구한 후 그 중앙값과 윈도우 내 움직임 벡터들과의 변위 값을 이용하여 이상치(outlier) 움직임 벡터를 제거한다. 마지막으로 에지 정보맵의 에지방향 연속성과 움직임 벡터와의 공간적 상호 연관성을 고려하여 가중치 벡터 중앙값 필터를 적용한다. 실험 결과 PSNR은 "0.5 ~ 1" dB, 유사성 명가 지표인 SSIM은 "0.4 ~ 0.8" %의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.