• 제목/요약/키워드: 방향가중치

검색결과 380건 처리시간 0.029초

소나시스템 비분리 평면센서배열의 효율적인 분리 가중치 기법 (An Efficient Separable Weighting Method for Sonar Systems with Non-Separable Planar Arrays)

  • 도대원;김우식;이동훈;김형문;최상문
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.208-217
    • /
    • 2013
  • 평면센서배열을 사용하는 소나시스템에서 송수신빔을 수평, 수직방향으로 분리하여 형성할 수 있다면, 빔형성에 필요한 연산량과 공간을 줄일 수 있는 장점들이 있다. 하지만 일반적으로 소나시스템에서 사용되는 평면센서배열은 공간상 수평, 수직방향으로 분리되지 않는다. 따라서 기존의 수평, 수직방향 분리 가중치를 이용하여 송수신빔을 분리하여 형성하면 목표로 하는 수평, 수직 빔 특성과 차이가 발생된다. 본 논문에서는 공간상 분리가 되지 않는 평면센서배열에 대해 효과적으로 분리된 수평, 수직 가중치를 적용하여 목표로 하는 수평, 수직 빔 특성을 얻기 위한 새로운 기법을 제안하였다. 제안한 기법은 평면센서 배열의 수평, 수직방향으로 영향을 미치는 유효센서수를 구해 분리된 수평, 수직 가중치에 적용시킨다. 이를 통해 목표로 하는 수평, 수직 가중치의 오차 합이 최소화되도록 반영시킴으로써 각 방향으로 목표로 하는 빔 특성을 가지도록 한다.

HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계 (Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation)

  • 김수진;조경순
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) 특징은 영상 기반 보행자 인식에서 널리 사용되고 있다. HOG 특징을 이용한 보행자 인식의 인식률을 높이는데 가장 중요한 역할을 하는 것은 보간 기술이다. HOG 특징 연산에 보간 기술을 적용하기 위해서는 각 픽셀의 기울기 방향에 가장 근접한 두 개의 기울기 방향 bin과 가중치를 계산해야 한다. 따라서 본 논문에서는 HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로를 제안한다. 제안하는 회로는 탄젠트 함수와 나눗셈 연산을 피하기 위해 미리 계산된 값을 테이블로 지정하여 사용하였으며, 탄젠트 함수와 가중치 값의 특성을 이용함으로써 회로 내 테이블의 크기를 최소화하였다. 또한 처리 속도 향상을 위해 파이프라인 구조를 적용하였으며, 효율적인 coarse 및 fine 탐색 방법을 적용하여 각 픽셀에 대한 기울기 방향 bin과 가중치를 두 클락 사이클 내에 계산한다. 본 논문에서 제안하는 회로는 $1^{\circ}$ 단위로 기울기 방향을 계산하여 기울기 방향 bin과 가중치를 모두 결정하기 때문에 HOG 특징을 위한 보간 기술에 적용되어 높은 인식률을 제공하기 위해 사용될 수 있다.

가중치 진동의 감소를 이용한 신경회로망의 학습속도 향상 (Acceleration of Learning speed Neural Networks by Reducing Weight Oscillations)

  • 임빈철;박동조
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.251-254
    • /
    • 1998
  • 본 논문에서는 신경회로망의 수렴속도를 높이기 위한 알고리즘을 제안한다. 전형적인 역전파 학습방식은 느린 수렴속도가 단점으로 제기되는데 이는 비용함수의 계곡부근에서 가중치의 궤적이 심한 진동현상을 보이기 때문이다. 이 문제를 해결하기 위해서 본 논문에서는 경사법에서 사용되는 갱신방향을 계곡의 진행방향을 이용하여 변경한다. 모의실험을 통하여 제안된 방법으로 가중치의 궤적에 나타나는 진동을 줄이고 수렴속도를 향상시킬 수 있음을 보인다.

  • PDF

가중치 워크플로우 소셜 네트워크의 사이중심도 분석방법 (A Betweenness Centrality Analysis Method in Valued Workflow-supported Social Networks)

  • 김미선;김광훈
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2016
  • 본 논문에서는 가중치 및 방향성 워크플로우 소셜네트워크의 사이중심도 분석방법과 그에 따른 알고리듬을 제안한다. 기존의 워크플로우 소셜네트워크는 워크플로우 모델을 구성하는 단위업무를 처리하는 과정에서 수행자들간의 업무전달관계 유무를 이진 소셜네트워크 모델로 표현한 것이다. 그러나, 워크플로우 기반 조직을 구성하는 수행자들간의 업무전달관계를 효과적으로 분석하기 위해서는 기존의 수행자들간의 관계유무를 기본으로 하는 이진 소셜네트워크 정보 뿐 만 아니라 수행자들간의 정량적 업무전달관계와 그 업무전달관계의 방향성 또한 효과적인 분석결과를 획득하는데 있어서 매우 중요한 요인이다. 결과적으로, 본 논문에서는 수행자 그룹의 효과적인 업무전달관계 분석을 수행하기 위하여 정량적 업무전달관계 수준과 그의 방향성을 고려한 가중치 및 방향성 워크플로우 소셜네트워크 개념과 수행자 그룹의 사이중심도 분석방법 및 알고리듬을 제안한다. 특히, 제안한 분석방법을 검증하기 위하여 기존의 이진 워크플로우 소셜네트워크에 대한 사이중심도 분석방법과 본 논문에서 제안한 가중치 및 방향성 워크플로우 소셜네트워크에 대한 사이중심도 분석방법을 특정 워크플로우 모델에 적용하여 그 분석결과를 비교한다.

3축 가속도 센서 데이터에 중력 방향 가중치를 사용한 낙상 인식 알고리듬 (Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data)

  • 김남호;유윤섭
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.254-259
    • /
    • 2013
  • 중력 방향에 대한 가중치를 적용한 3축 가속도 센서 데이터를 낙상 특징 변수로 사용해서 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 기존에 낙상인식에 많이 사용되는 변수인 3축 가속도의 벡터 합(Sum Vector Magnitude, SVM)과 새롭게 정의한 변수인 중력방향가중치를 적용한 3축 가속도의 벡터 합(Gravity-weighted Sum Vector Magnitude, GSVM)를 포함한 다섯 가지 낙상특징변수를 은닉 마르코프 모델에 적용하여 낙상 인식률을 평가하였다. 실험을 통해 얻은 가장 좋은 결과는 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수를 적용한 결과이고 100% 민감도(sensitivity)와 97.96% 특이성(specificity)를 얻었다. 이것은 단순 3축 가속도의 벡터 합 변수에 비해 민감도는 5.2%와 특이성은 4.5% 정도 향상되었다. 단순히 운동량만을 표현하는 3축 가속도의 벡터 합 변수에 비해 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수가 낙상의 움직임에 대한 특징을 잘 표현하기 때문에 높은 인식률을 나타내었다.

채널간 상관관계 및 에지 방향을 고려한 컬러 보간 (Edge-directed demosaicing considering cross channel correlation)

  • 유두식;강문기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.413-414
    • /
    • 2007
  • 본 논문은 칼라 필터 배열(color filter array : CFA) 영상에서 채널 간 상관관계를 이용한 새로운 에지 방향 컬러 보간 방법을 제시하였다. 고정 채널 간 컬러 차 가정에 따라 휘도와 색차간의 차가 큰 경우 에지 영역이라 판단한다. 에지 방향 판별을 정확히 하기 위해 수평, 수직 방향으로 컬러 차 영상을 구하고, 구한 영상에서 변화량을 계산하여 에지 방향 판별 기준으로 사용한다. 에지 판별 기준을 사용하여, 에지 방향에 따라 컬러 보간을 수행한다. 평탄 영역은 이웃 화소와의 유사성에 따라 가중치를 다르게 줘서, 이웃 화소의 가중치 합으로 구한다 실험 결과는 제안하는 알고리즘이 기존 알고리즘 보다 우수함을 보여준다.

  • PDF

국부 Gradient 특징을 이용한 방향성 deinterlacing 방법 (Directional Deinterlacing Method Using Local Gradient Features)

  • 우동헌;임일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.41-46
    • /
    • 2005
  • Deinterlacing은 비월 주사 영상을 순차 주사 영상으로 변환하는 방법을 뜻하며 2배의 영상 보간 문제로 볼 수 있다. 본 논문에서는 보간하려는 화소의 국부 Gradient 정보를 이용한 간단하면서도 효율적인 deinterlacing 방법을 제안한다. 제안 방법에서는 보간하려는 화소를 중심으로 각 방향별 가중치가 추정되며 이 가중치에 따른 평균으로 보간 할 화소의 밝기값이 결정된다. 제안 방법에서는 모든 방향에 대한 가중치를 고려함으로써 잘못된 방향 판단으로 인한 화질 열화를 피하였고 실제적인 구현에 적합한 구조를 가지고 있다. 모의실험에서 제안 방법은 대표적인 방향성 deinterlacing 방법인 ELA보다 개선된 주관적, 객관적 성능을 보여주었으며 복잡한 구조와 여러 개의 경험적인 파라미터들을 요구하는 ELA의 변형에 대해서도 대등한 성능을 보여주었다.

가중치 벡터합을 이용한 이동객체의 방향계산 및 미디어 검색방법 (A Direction Computation and Media Retrieval Method of Moving Object using Weighted Vector Sum)

  • 서창덕;한기태
    • 정보처리학회논문지D
    • /
    • 제15D권3호
    • /
    • pp.399-410
    • /
    • 2008
  • 본 논문은 기존 위치기반 서비스에서 최근접질의 및 한 지점에서의 방향성분을 고려한 최근접질의의 단점을 해소하고자 가중치 벡터합을 이용하는 새로운 검색방법을 제안한다. 검색반경으로 1차 필터링된 영역에서, 2차 필터링을 위해 이용자의 이동방향, 관심방향 및 검색각도를 조합한 방향정보를 이용한다. 이동방향은 일정구간내 존재하는 벡터들의 가중치 합으로 계산하며, 검색각도를 $0{\sim}360^{\circ}$까지 세분화하여 검색방향에 대한 범위를 조절 하도록 한다. 본 검색방법에 사용되는 데이터는 촬영위치가 기록된 정지영상 및 동영상, 업체나 관광지의 위치정보와 함께 소비자에게 제공되는 텍스트, 웹, 영상 등 각종 미디어 형태의 데이터가 될 수 있다. 제안하는 방법은 이동 중인 이용자가 현 위치를 기준으로 일정 반경 내에 있으면서 유사방향에 부합하는 미디어만을 검색하도록 함으로써, 이미 지났거나 혹은 관련 없는 방향의 미디어를 배제한 검색결과를 제공하기 때문에 기존의 위치만을 고려한 검색방법에 비해 보다 정확한 검색을 보장할 수 있으며, 방향성을 고려한 기존 최근접질의 에 비해서도 보다 유연하고 포괄적인 검색결과를 보장한다.

중요도를 고려한 가중치 그래프에서의 빈발 순회패턴 탐사 (Discovery of Frequent Traversal Patterns on Weighted Graph with Priority)

  • 이성대;박휴찬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.169-171
    • /
    • 2005
  • 그래프를 사용하는 데이터 표현법은 직$\cdot$간접적으로 실세계를 표현하는 다양한 데이터 모델 중에서 가장 일반화된 방법으로 알려져 있다. 기본적으로 그래프는 정점과 간선으로 구성되며, 정점과 간선은 그 중요도나 운영 목적에 따라 다양한 가중치가 부여될 수 있다. 특히, 이러한 그래프를 순회하는 트랜잭션들로부터 중요한 순회패턴을 탐사하는 것은 흥미로운 일이다. 본 논문에서는, 정점과 간선에 가중치가 있고 방향성을 가진 기반 그래프가 주어졌을 때, 그 그래프를 순회하는 트랜잭션들로부터 가중치를 고려하여 빈발 순회패턴을 탐사하는 방법을 제안한다. 또한, 이렇게 탐사한 결과에 가중치를 고려한 중요도를 평가하여 빈발 순회패턴들 간의 우선순위를 결정할 수 있도록 한다. 이 과정에서 발생할 수 있는 트랜잭션 노이즈는 기반 그래프의 간선 가중치의 평균과 표준편차를 이용하여 제거함으로써 보다 신뢰성 있는 빈발 순회패턴을 탐사할 수 있다. 제안한 논문은 웹 로그 마이닝 등 그래프를 이용하는 다양한 응용 분야에 적용할 수 있을 것이다.

  • PDF

에지 기반 가변 가중치 벡터 중앙값 필터를 이용한 움직임 벡터 처리 (The Edge-Based Motion Vector Processing Based on Variable Weighted Vector Median Filter)

  • 박주현;김영철;홍성훈
    • 한국통신학회논문지
    • /
    • 제35권11C호
    • /
    • pp.940-947
    • /
    • 2010
  • DTV Full HD급이 보편화되면서 LCD(Liquid Crystal Display)의 잔상효과 제거와 격동적인 화면에서의 고화질 구현을 위해 수신 단에서 후처리 과정으로 움직임 보상 기반 프레임 보간(MCFI)이 사용되고 있다. MCFI는 움직임 정보를 이용하여 삽입될 화면을 보간하는데 이러한 움직임 정보를 후처리 없이 바로 사용하는 건 많은 열화 현상 및 보간 된 물체의 구조 변형 결과를 초래한다. 이에 본 논문에서는 움직임 벡터 후처리 가법으로서 에지 방향 정보기반 가변 가중치 벡터 중앙값 필터를 이용하여 움직임 벡터 처리 기법을 제안한다. 제안한 움직임 벡터 처리 가법은 먼저 소벨 마스크와 가중치 최대빈도필터를 통해 에지 정보맵을 생성한다. 그리고 $3{\times}3$ 윈도우 내 움직임 벡터들의 중앙값을 구한 후 그 중앙값과 윈도우 내 움직임 벡터들과의 변위 값을 이용하여 이상치(outlier) 움직임 벡터를 제거한다. 마지막으로 에지 정보맵의 에지방향 연속성과 움직임 벡터와의 공간적 상호 연관성을 고려하여 가중치 벡터 중앙값 필터를 적용한다. 실험 결과 PSNR은 "0.5 ~ 1" dB, 유사성 명가 지표인 SSIM은 "0.4 ~ 0.8" %의 성능 향상을 보였다.