이 실험은 제주도내 양식장으로부터 유입수와 방출수의 다제내성(MDR)을 가진 Vibrio 균의 plasmid profiling을 위해 진행하였다. Plasmid profiling을 위해 사용한 다제내성을 가진 균주는 디스크 확산법을 통해 확인하였고, 유입수와 방출수으로부터 각각 150개의 Vibrio 균주를 분리하였다. 모든 다제내성 균주를 대상으로 plasmid profiling을 실시하였으며, 유입수와 비교하여 방출수에서 많은Vibrio 균이 열거되었다(유입수 39%, 방출수 61%). 방출수에서는 neomycin, sulfamethoxazole, amoxicillin 및 oxytetracycline의 내성을 가진 균주가 유의적으로 많은 것으로 확인되었고, 대조적으로 Vibrio 균주는 florfenicol, chloramphenicol, ciprofloxacin 및 nalidixic acid에 더 민감한 것으로 확인이 되었다. 99종의 다제내성 균주(유입수 39종과 방출수 60종) 중에서 총 58종(유입수 38종과 방출수 20종)이 1.7 kb에서 10 kb 이상의 플라스미드를 가지고 있는 것을 확인하였으며 플라스미드 크기마다 19가지의 다른 다제내성 패턴을 보였다. 6종의 유입수와 4종의 방출수에서 다제내성 균주는 특이적인 plasmid profile이 확인되었다. 방출수 샘플은 보다 많은 플라스미드를 가진 다제내성 Vibrio 균주와 다양한 plasmid profile들과 다제내성 패턴을 가지고 있었고 이는 양식장의 저장탱크가 항생제내성 유전자의 저장소 역할을 할 수 있다는 점을 시사한다. 양식장의 방출수에서 plasmid를 가진 다제내성 Vibrio 균주의 존재는 항생제 내성 유전자의 전파에 기여할 수 있으며 이로 인해 인간의 건강을 위협할 수 있다.
진공상태에서 diamond stylus로 MgO 표면을 마모시킬 때 발생되는 photon, electron과 마찰력을 시간의 함수로 동시에 측정하였다. 전자 방출(EE)은 Channeltron electron multiplier로 , 광자 에너지는 Photomultiplier tube를 사용하여 측정하였는데 180~600nm 영역의 photon을 검출하였다. 광자 방출(PhE,) 실험은 공기중에서도 할 수 있으나 전자방출은 1$\times$10-4pa 이하의 진공에서 실험하여 얻었다. 본 실험을 통하여 결정과 diamond stylus 사이에서 일어나는 마모 현상은 millisecond로 관찰하여 표면 변화에 대한 상관관계를 조사하였다. 열처리 한것과 열처리 하지 않은 시료를 비교한 결과 3개의 signal(마찰력, PhE, EE)을 시간에 따라 분석하면 stick-slip-like 현상을 볼 수 있었다. 이것으로 보아 stick은 변형에 의해 생기고 ms 후에 벽개 현상이 발생됨을 볼 수 있다. 방출과 마찰력은 표면조건, load, stylus velocity에 따라 변하였다. luminescence는 주로 변형에 의해 생겼으며, 전자 방출은 벽개(fracture)에 의해 발생됨을 알 수 있었다. 시료의 처리과정과 load 속도에 따른 Photon, electron의 방출은 시료의 표면 상태에 따라 좌우되었다. 마찰력, PhE, EE의 시간에 따른 분석에서 PhE는 변형 과정에 민감하며, EE는 stylus velocity에 의존하였다. 이러한 방출 현상은 세라믹의 급격한 벽개 과정을 이해하는데 많은 도움을 주었다.
압력 $10^{-9}$ Torr 이하의 초고진공(ultrahigh vacuum) 영역에서의 압력 측정에는 수 mA의 열전자로 잔류 가스를 이온화시켜 그 이온 전류를 측정하는 이온게이지를 주로 사용한다. 압력이 $10^{-12}$ Torr영역 이하인 극고진공(extreme high vacuum: XHV) 영역에 진입하면, ESD (electron stimulated desorption) 효과 등에 의한 이온 게이지 자체의 가스방출률이 커져 정확한 압력 측정이 곤란해 진다. 극고진공 영역에서 이온 게이지는 수 와트(W) 이상의 전력을 사용하여 수 mA의 열전자를 방출시키나, 신호인 이온 전류의 양은 1pA 이하이기 때문에 열전자에 의해 발생되는 백그라운드 전류에 묻혀 신호 전류가 측정되지 않는다고 할 수 있다. 100 nm 이하의 곡률을 가진 뾰족한 금속 탐침에 강한 전기장을 걸어주면 고체 내부의 전자가 터널링 효과에 의해 진공 중으로 방출되며, 이를 전계방출(Field Electron Emission) 효과라 부른다. 전계 방출 전류량은 탐침 표면의 일함수에 의존하며, 일함수가 클수록 지수함수 적으로 감소한다. 금속 표면에 진공 중의 잔류 가스가 부착하면 일함수가 증가한다. 가열에 의해 전계방출 탐침의 표면을 세정한 후에 전자 빔을 방출 시키면, 표면에 가스 분자가 흡착하여 방출 전류량은 점점 감소한다. 감소 속도는 압력에 비례하며, W(310) 탐침의 경우 $10^{-10}$ Torr 영역에서는 수분만에 최초 전류값의 1% 이하로 감소한다. 전계방출 전류의 감소속도가 압력에 비례하는 현상을 이용하여 압력을 측정하였다. Extractor Ionization Gauge 측정값 $5{\times}10^{-12}-3{\times}10^{-10}$ Torr의 범위에서 (111) 방향으로 정렬된 텅스텐 단결정 탐침을 사용하여 방출전류의 로그값을 시간의 함수로 semilog그래프를 그리면, 그래프는 직선을 그리며 그 기울기가 압력에 비례함을 알 수 있었다. 기울기 값과 게이지 측정값은 $10^{-11}{\sim}10^{-10}$ Torr 영역에서 거의 완벽한 비례관계를 보여주었으나, $10^{-12}$ Torr 영역에서 게이지 측정값은 기울기 값에서 추출한 압력치보다 높은 값을 보여주었으며, 이는 게이지 백그라운드 전류에 의한 차이라고 생각된다. W (310) 탐침의 방출전류는 그 감소속도가 W (111) 탐침과 마찬가지로 압력에 비례하였으나, 전류-시간 그래프는 가열 세정 직후에 전류가 거의 감소하지 않는 $2{\times}10^{-10}$ Torr에서 약 10분간 지속되는 '안정 영역'이 존재함을 보여주었다. '안정 영역'은 $10^{-11}$ Torr 영역에서는 수십분, $10^{-12}$ Torr 영역에서는 수시간 이상으로 증가하였다. 초-극고진공 영역에서의 잔류가스 주성분인 수소에서 물, 일산화탄소등의 가스로 바뀌면 '안정 영역'은 사라졌고, 이는 '안정 영역'이 수소 흡착에 의해서만 나타나는 고유 현상임을 말해준다.
탄소나노튜브는 그 고유한 전자적, 기계적 특성 때문에 미래의 여러 전자부품 소재로서의 무한한 가능성을 지니고 잇는 것으로 알려져 있으며, 최근에는 디스플레이의 전자방출소자로서 관심이 집중되고 있다. 특히, 큰 aspect ratio를 갖는 나노튜브의 특성 때문에 높은 전계향상효과를 얻을 수 있으므로, 전계방출디스플레이의 음극소재로서 유망하다. 하지만 탄소나노튜브가 전계방출디스플레이의 음극소재로서 적용되기 위해서는 수직배향, 전자방출의 ebs일성 및 장시간 안정성, 그리고 낮은 온도에서의 성장 등의 문제점들이 해결되어야만 한다. 탄소나노튜브의 여러 제조방법들 중에서 위에서 제시된 문제점들을 해결할 수 있는 것으로써 CVD 법이 제일 유망하며, 이는 CVD 공정이 여러 제조 방법들 중에서 가장 낮은 온도조건에서 나노튜브의 합성이 가능하고, 저가격, 특히 응용 디바이스에 기존의 공정과 호환하여 사용될 수 있는 장점이 있기 때문이다. 본 연구에서는 열 CVD 공정에 의해서 탄소나노튜브를 제조한후, 그 물성 및 전계 방출 특성을 평가하였다. 특히 CVD 공정을 이용한 탄소나노튜브의 제조시 필수적으로 요구되는 촉매의 형태 및 물성을 바꾸어 줌으로써, 성장하는 나노튜브의 수직 배향성, 밀도 등의 물성을 변화시켰으며, 촉매가 나노튜브의 성장에 미치는 영향을 고찰하였다. 이러한 다양한 물성 및 형태를 갖는 나노튜브를 제조한 후, 형광체를 이용한 발광형상을 통해 전계방출 현상을 관찰함으로써, 전계방출소재로서의 우수한 특성을 나타낼 수 있는 탄소나노튜브의 제조조건을 확립하고자 하였다. 또한 고밀도의 탄소나노튜브에서 나타날 수 있는 방출면적의 감소 및 불균일성을 해결하고자 탄소나노튜브를 기판에 선택적으로 성장시킴으로써 해결하고자 하였다. 또한 위에서 언급된 열 CVD 공정을 이용한 탄소나노튜브의 제조 및 평가 이외에 보다 더 낮은 온도에서의 탄소나노튜브 합성을 위하여 본 연구에서는 열 CVD 공정에 플라즈마를 첨가하여 저온합성을 유도하였다. 일반적인 열CVD 공정은 80$0^{\circ}C$에서 진행되었으나 플라즈마를 도입한 공정에서는 그 제조온도를 $600^{\circ}C$정도로 낮출 수 있었으며, 이에 따른 물성 및 전계 방출 특성을 위와 비교, 평가하였다.
SEBIM 밸브 상부에 위치한 밀봉수의 급격한 방출은 밸브 후단의 방출배관계통에 큰 운동량과 관성력의 작용을 초래한다. 본 연구는 밸브개방시 방출배관계통의 후단에 발생하는 열수력학적 과도현상을 분석하기 위한 해석절차 및 해석결과를 다루고 있으며, 이 분석을 위해 RELAP5 /MOD3 를 사용하였다. RELAP5 /MOD3 분석을 위하여, 방출관 계통과 SEBIM 밸브의 개방특성 및 밀봉수 방출등의 적절한 모델방법이 제시되었다. 또한 접합부(junction)와 체적(volume)의 제어 플래그 (flag)에서 옵션(option)의 적절한 선택을 위하여 민감도분석도 수행되었다. 분석결과, SEBIM 밸브 방출배관계통의 밀봉수 방출에 따른 열수력학적 과도현상을 분석하는데 RELAP5 /MOD3가 적절히 사용될 수 있음을 알 수 있었다. 민감도 분석결과로부터, 밀봉수 방출해석을 위해서는 적절한 기하학적 압력분포를 가지는 완만한(smooth) 면적변화 및 비평형 옵션(option), 적절한 시간간격(time step)의 사용이 필수적인 것을 알 수 있었다.
본 연구는 진공상태에서 단단한 물질로 된 diamond stylus로 단결정 MgO 표면에 마모(abrasion)가 할 때 발생되는 Photon emission(PHE), electron emission(EE), 마찰력을 시간의 함수로 동시에 측정하였다. 마모가 일어나는 동안 PHE 와 EE을 시간의 함수로 측정하면 마찰력 신호(signal)와 일치하지 않고 강한 fluctuation을 보여주고 있다. 마모를 가할 때 PHE와 EE의 signal은 wear 실험이 지속되는 동안은 force signal과 관계가 있다. 그러나 변형과 마찰력의 시간의 함수에는 관계하지 않음을 알 수 있다. 본 실험에서 사용된 실험장치는 PhE, EE, frictional force을 동시에 실할 수 있는 장치이다. 광자방출 실험은 공기 중에서도 할 수 있으나 전자방출은 진공에서 얻을 수 있으므로 1$\times$10-4pa하에서 실험하였다. 전자방출은 Channel electron multiplier(bias-100V)로 검출하였고, 광자 에너지는 Gencom photomultiplier를 사용하여 180~600nm의 photon을 측정하였다. 마모는 탐색기에 관계되는 접촉점의 움직임에 관계없이 실험하였다. 시료의 처리과정과 load속도에 따른 PhE, EE, data의 방출은 시료의 표면 상태에 따라 좌우되었다. cleaved 표면은 polished 표면보다 강한 emission을 나타내었다. 이것은 마찰이 표면 상태에 의존됨을 볼 수 있었다. 속도에 따라 emission이 증가하다가 ~0.5m/s이상에서 포화상태에 도달하였다. emission 측정은 열처리한 시료와 열처리 안한 시료를 비교하였다. 발광도(luminescence)는 주로 변형(deformation)에 의해 생겼으며, 전자 방출은 벽개(fracture)에 의해 발생됨을 알 수 있었다. 측정한 3개의 signal을 시간에 따라 분석하면 stick-slip-like 현상을 볼 수 있었다. 이것으로 보아 stick은 변형에 의해 생기고 ms 후에 벽개 현상이 발생됨을 볼 수 있다. 이러한 방출 현상은 마모시 일어나는 세라믹의 급격한 벽개 과정을 이해하는 데 많은 도움을 주었다. PhE와 EE signal은 다이아몬드 stylus로 단결정 MgO 기판에 마모를 가할 때 ms 단위로 검출 할 수 있었다. 방출과 마찰력은 표면조건, load, stylus velocity에 따라 변하였다. 마찰력, PhE, EE의 시간에 따른 분석에서 PhE는 변형 과정에 민감하며, EE는 stylus velocity에 의존하였다. 본 연구의 MgO 마찰 실험에서 표면 변화에 대한 정보를 얻을 수 있었다.
질소 및 인 동시제거 공정 중 대표적인 연속회분식반응조(Sequencing Batch reactor: SBR)는 비교적 간편한 운전방법과 저렴한 건설비, 유입수의 부하변동에 큰 영향을 받지 않는 소규모 하수처리에 적합한 공정으로 알려져 있다. 또한 SBR 공정은 기존 활성슬러지 공법에 비해 적은 부지로 많은 양의 폐수를 처리할 수 있고 유입수 수질 및 유량변동에 따라 다양한 운전주기를 변화할 수 있으며, 유기물 제거뿐만 아니라 반응조의 변형에 의해 영양염류의 제거가 가능한 장점이 있다. 본 연구에서는 bench scale SBR 실험을 통하여 질산염의 탈질속도 및 용해성 인의 흡수와 방출속도를 측정하고, SBR 공정의 무산소조건에서 인흡수 및 탈질을 동시에 수행하는 DPB 존재의 가능성을 파악하고자 하였다. 연구결과 무산소조건에서 S-P의 방출과 흡수가 동시에 진행되었으며, 무산소조건에서 S-P의 방출속도는 $0.08{\sim}0.94\;kgS-P/kgMLSS{\cdot}d$, 흡수속도는 $0.012{\sim}0.1\;kgS-P/kgMLSS{\cdot}d$를 나타내었다. 무산소조에서 S-P의 방출 및 흡수가 진행되는 동안 탈질과정도 함께 진행되었으며, 각각의 F/M비에서 탈질속도를 측정한 결과 F/M비 $0.44\;kgCOD/kgMLSS{\cdot}d$에서는 최대 $0.16\;kgNO_3^-N/kgMLSS{\cdot}d$의 탈질속도를 나타내었다. S-P이 방출되지 않는 경우와 방출되는 경우의 비탈질속도를 비교한 결과 S-P이 방출되지 않는 경우의 비탈질속도가 S-P이 방출되는 경우의 비탈질속도보다 높았다. 이렇게 S-P이 방출되는 경우의 비탈질속도가 더 낮은 이유는 무산소 조건에서 탈질과 S-P의 방출 및 흡수가 동시에 일어나는 경우 S-P의 방출에 관여하는 미생물과 탈질에 관여하는 미생물간의 경쟁반응 때문으로 판단된다.응답법의 적용이 가능함을 보였고, 이는 보다 복잡한 관망에서의 천이류 해석이 가능함을 시사한다.$경상도지리지$\lrcorner$(慶尙道地理志)에는 상주가 8곳으로 1/3의 자기 생산을 담당하고 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감소를 초래하였을 것으로 사료된다. 셋째, 경기도 광주에서 백자관요가 운영되었으므로 지방인 상주지역에도 더 이상 백자를 조달받을 필요가 없이, 일반 지방관아와 서민들의 일상용기 생산으로 전락하여 소규모화 되었을 것이라고 사료된다.장 운동기능을 향상시키는 유효성분의 보강 등이 필요하다는 점도 알 수 있었다.더불어 산화물질 해독에 관여하는 다른 유전자
후쿠시마 원전 사고가 일어난 지 10년이 지난 지금까지도 일본은 매일 생성되는 원전 오염수 문제를 해결하지 못하고 있다. 그들은 오염수 저장탱크가 한계에 다다를 것으로 예상되자, 안전성에 관한 한국의 우려에도 일방적으로 원전 오염수를 해양에 방출하기로 했다. 문제는 한국의 대응에도 불구하고, 여전히 일본이 『유엔해양법협약』상 의무를 성실히 이행하지 않은 채 해양 방출을 준비하고 있다는 데 있다. 원전 오염수의 방사성물질로 인한 해양오염은 물론, 한국의 해양주권 침탈까지도 우려되는 상황이다. 특히 한번 환경이 오염되기 시작하면 본래의 상태로 되돌리기 어렵기에, 당장 안전성이 보장되지 않는 한 원전 오염수의 해양 방출은 반드시 막아야 한다. 본 논문은 일본과 한국이 원전 오염수 해양 방출 사안으로 빚은 갈등을 해결하기 위한 한국의 대응 전략을 제안한다. 한국은 일본과의 협력, 잠정조치, 주변국과의 공조를 통해 다양한 측면에서 일본의 원전 오염수 해양 방출에 대응해야 할 것이다.
화학증착법으로 증착된 다이아몬드 박막은 우수한 전기적 특성과 뛰어난 화학적, 열적 안정성 때문에 전계방출소재로 많은 관심을 불러 일으키고 있다. 다이아몬드 박막의 전계방출은 저전계에서 일어나는 것으로 알려져 있으며, 저전계방출의 원인을 규명하려는 많은 연구가 진행되어 왔다. 한편, 다이아몬드 박막의 전계방출전류는 금속기판의 사용에 의한 기판/다이아몬드 접촉의 개선, 다이아몬드 박막내의 흑연성분의 조절에 의한 구조변화, 보론이나 인 (P), 질소의 도핑, 수소 플라즈마나 cesium 등의 금속을 이용한 표면처리 등의 여러 방법에 의하여 향상된다는 것이 입증되었다. 그 외에 메탄과 대기 분위기 처리, 암모니아 분위기에서의 레이저 조사도 전계방출특성을 향상시키는 것으로 보고되었다. 그러나, 다이아몬드 박막의 성장후 구조적 특성이 다른 박막의 후성장이나 열분해된 운자수소 처리가 다이아몬드 박막의 전계방출특성에 미치는 영향에 관한 연구는 지금까지 이루어지지 않았다. 본 연구에서는 수소처리와 후성장이 다이아몬드 박막의 전계방출특성에 미치는 영향을 고찰하고 이로부터 그 원인을 규명하고자 하였다. 다이아몬드 박막은 hot-filament 화학증착법을 이용하여 증착하였다. 후성장한 다잉아몬드 박막내의 흑연성분과 박막의 두께를 체계적으로 조절하여 후성장 박막의 구조적 특성과 그 두께의 영향을 확인할 수 있었다. 후성장층내의 흑연성분과 두께가 증가할수록 전계방출특성은 향상되다가 저하되었다. 한편, 다이아몬드 박막을 성장시킨 후 수소분위기 처리를 함에 따라 전계방출특성은 향상되었지만 수소처리시간이 5분 이상으로 증가함에 따라 그 특성은 저하되었다. 본 연구에서는 수소처리와 후성장시 나타나는 전계방출특성의 변화 원인을 규명하고자 한다.기판위에서 polymer-like Carbon 구조는 향상되는 경향을 보였다.0 mm인 백금 망을 마스크로 사용하여 실제 3차원 미세구조를 제작하여 보았다. 그림 1에서 제작된 구조물의 SEM 사진을 보여주었으며, 식각된 면의 조도가 매우 뛰어나며 모서리의 직각성도 우수함을 확인할 수 있다. 이와 같이 도출된 시험 조건을 기초로 하여 리소그래피 후에 전기 도금을 이용한 금속 몰드 제작 및 이온빔 리소그래피 장점을 최대한 살릴수 있는 미세구조 제작에 대한 연구를 계속 추진할 계획이다. 비정질 Si1-xCx 박막을 증착하여 특성을 분석한 결과 성장된 박막의 성장률은 Carbonfid의 증가에 따라 다른 성장특성을 보였고, Silcne(SiH4) 가스량의 감소와 함께 박막의 성장률이 둔화됨을 볼 수 있다. 또한 Silane 가스량이 적어지는 영역에서는 가스량의 감소에 의해 성장속도가 둔화됨을 볼 수 있다. 또한 Silane 가스량이 적어지는 영역에서는 가스량의 감소에 의해 성장속도가 줄어들어 성장률이 Silane가스량에 의해 지배됨을 볼 수 있다. UV-VIS spectrophotometer에 의한 비정질 SiC 박막의 투과도와 파장과의 관계에 있어 유리를 기판으로 사용했으므로 유리의투과도를 감안했으며, 유리에 대한 상대적인 비율 관계로 투과도를 나타냈었다. 또한 비저질 SiC 박막의 흡수계수는 Ellipsometry에 의해 측정된 Δ과 Ψ값을 이용하여 시뮬레이션한 결과로 비정질 SiC 박막의 두께를 이용하여 구하였다. 또한 Tauc Plot을 통해 박막의 optical band gap을 2.6~3.7eV로 조절할 수 있었다. 20$0^{\circ}C$이상으로 증가시켜도 광투과율은 큰 변화를 나타내지 않았다.부터
본 논문의 내용은 다중전극에 전기 중합한 전도성 고분자를 이용하여 약물을 결합한 후 전압 인가에 의한 선택적인 약물방출을 구현하는 것이다. Glass wafer에 anode와 cathode 전극을 제작하고 4개의 anode 전극면에 각각 전기중합으로 전도성 고분자막을 합성하였다. 양이온성 약물인 lidocaine을 결합할 수 있도록 피롤과 함께 도펀트로써 분자량이 큰 DBS를 사용하였으며 고분자막의 이온출입원리를 이용하여 약물을 결합하고 방출하였다. Cyclic voltammogram로부터 PPy(DBS) Polypyrrole (dodecylbenzene sulfonate) 전극의 산화 환원특성 및 전극면에 PPy(DBS) 막이 생성되기 위한 조건을 확인하였고, 그 결과를 토대로 PPy(DBS)막을 3전극 시스템과 Coulometry를 이용하여 전압을 인가하여 합성하였고, 합성전하량으로 부터 PPy(DBS)막의 두께를 알 수 있었다. Lidocaine의 결합 및 방출 시에도 정전압을 이용하였으며 약물의 방출 유무를 확인하기 위하여 UV spectrometer를 사용하였다. 다중전극에 PPy(DBS)막을 1.5um 두께로 합성한 후 lidocaine을 결합시키고 선택적으로 약물을 방출한 결과 각각의 PPy(DBS)막으로부터 $1.4{\sim}1.7mg$의 약물이 방출됨을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.