내부지름이 2.0 mm 이하인 PTFE와 PE 튜브에 진공장치를 이용하여 튜브 내부의 압력을 감압하여 진공상태를 형성하였다. 진공기밀 후에 반응성 가스를 인입하여 튜브 외부에 장착된 전극을 통하여 고전압의 AC 전압을 인가하여 튜브 내부에 선택적으로 유전체 장벽 방전을 유도하였다. 본 연구에서는 유전율이 3.0 이하로 낮은 PTFE와 PE 튜브에 유전체 장벽방전이 유도될 때 나타나는 전압과 전류의 파형을 분석하여 방전의 개시와 방전의 형태를 조사하였다. 주파수 40 kHz인 AC 전원(PEII, Advanced Energy)과 Loadmatch 모듈을 이용하여 4 kV 이하의 전압을 인가하여 플라즈마 방전 유도하였다. 튜브에 인가고전압 프로브와 전류 프로브를 이용하여 오실로스코프를 I-V 분석을 실시하였고, 실험 결과 대기압 방전에서 유도되는 유전체 장벽방전의 I-V 특성과 달리 방전의 형태가 유전체장벽방전과 글로우방전이 혼합된 형태로 나타났다. 또한 유전체 장벽방전을 통해 튜브 내부에 형성되는 플라즈마에 대한 분석으로 OES 광분석을 실시하여, 방전 시간과 전압 변화에 따른 고분자 표면으로부터 방출되는 활성종에 대한 분석을 실시하였다.
유도 결합 플라즈마에서 안테나 전류의 측정을 통해 시스템 저항을 계산하여 플라즈마 소비 전력을 구하는 기존의 방법은 정밀한 전류 측정의 한계를 가지고 있다. 본 연구에서는 유도 결합 방전 시스템에서 정합회로와 코일 사이에 설치된 전류 측정 장치를 사용하여 방전된 상태에서의 인가한 전력에 따른 코일 전류를 측정하였고, 방전되지 않은 상태에서 방전되었을 때와 같은 전류를 흐르게 인가 전력을 조절하였다. 이때의 측정값이 시스템이 소비하는 전력이라고 할 수 있다. 결과적으로 기존의 시스템 저항의 오차를 고려하지 않기 때문에 개선된 소비 전력값을 좀 더 용이하게 구할 수 있었다.
본 연구는 자계내에서 직류 차단설비의 아크소호 현상을 규명하기 위하여 침대 평판 전극에 부극성 직류 고전압 인가시 아크전압 및 전류 그리고 이들 파형특성을 자계세기의 변화에 따라 연구 검토하였다. 본 연구에서 얻은 중요한 결론은 다음과 같다. 자계가 인가되지 않았을 때는 아크동특성이 나타나지 않고 아크전압의 감소와 아트전류의 증가가 순간적으로 이루어진 후, 일정하게 유지되었을 뿐만아니라 전류 파형으로부터 아크방전이 연속적으로 발생됨을 알수 있었다. 자계가 인가되면 아크동특성이 나타난후, 서서히 아크전압이 감소되고 증가되고 아크전류는 감소되었다. 그리고 전류파형으로부터 아크방전은 단속적으로 됨에 따라 전류영점이 나타남을 알 수 있었고, 전류영점이 나타나는 주기와 아크방전의 단속 주기가 일치하였으며 자계가 증가될수록 주기도 증가되었다.
액체 표면을 전극으로 하는 플라즈마 방전은 생물학적 살균, 분해 처리 등에 필요한 UV 및 화학적 활성종의 생성에 유리하여 널리 활용되고 있다. 하지만 그 특성 등에 관한 연구는 액체막의 유동 및 기하학적 구조 상 진단의 제한으로 인하여 아직 미비한 상태이다. 전해질 내 방전은 전극 표면의 기포 막 에 인가되고 그 두께에 따라 변한다. 따라서 본 연구에서는 액상 전해질의 인가 전압 및 점성도를 독립적으로 조절하여 기포 막 크기와 인가 전력간의 관계와 이에 따른 전해질 내 플라즈마의 특성이 음극 글로우 방전임을 밝혔다. 실험에서는 전기 전도도 1.6-3.2 S/m의 NaCl 수용액 전해질에 양극성 전극을 삽입하고 350 kHz의 전압을 인가하여 플라즈마를 발생하였다. 인가된 전압은 230 - 280 V이며 전해질의 점성도는 젤라틴을 첨가하여 1E-4-1.1 kg/m${\times}$sec로 조절하였다. 기포 막의 두께 및 변화는 고속카메라를 통하여 관측하였으며 인가되는 전압 및 전류는 고전압 프로브와 전류 프로브를 통하여 관찰하였다. 기포 막은 전극표면에서 막 비등을 통하여 발생됨을 밝혔다. 인가 전력과 손실 열에너지간의 비율에 따라 기포막은 수축과 확장의 진동을 반복하였으며 전기 유체적 모델을 통하여 기포 막의 동적 거동에 따른 플라즈마에 인가된 전력의 변화를 정량적으로 분석할 수 있었다. 기포 막의 평균적인 두께는 인가 전압과 비례하여 약 $150\;{\mu}m$에서 $200\;{\mu}m$로 증가하였으며 진폭은 점성의 증가 시 약 $50\;{\mu}m$에서 $20\;{\mu}m$로 감소하였다. 순간적인 플라즈마 인가 전력은 평균적인 두께에 따른 평균적인 두께에 대해서는 15 - 20 W의 변화를 보였으나 진폭의 감소 시 17 - 70 W의 보다 큰 폭으로 증가하였다. 이를 통하여 점성도가 큰 조건에서 기포 막의 확장이 억제되어 방전이 유지됨을 알 수 있었다.
박막 공정 기술은 반도체 및 디스플레이뿐만 아니라 대부분의 전자소자에 적용되는 매우 중요한 기술이다. 그 중, 마그네트론 스퍼터링 공정은 플라즈마를 이용하여 금속 및 세라믹 등의 벌크 물질을 박막으로 증착 가능한 가장 널리 사용되는 방법 중의 하나이다. 하지만, Fe, Co, Ni 같은 강자성체 재료는 공정이 불가능하며, 스퍼터링 타겟 효율이 40% 이하이고, 제한적인 방전압력 범위 및 전류 상승에 의한 높은 전압 인가 제한이 있다는 단점이 있다. 본 연구에서 사용된 고밀도 플라즈마 소스를 적용한 고효율 스퍼터링 시스템은 할로우 음극을 이용한 원거리에서 고밀도 플라즈마를 생성하여 전자석 코일을 통해 자석이 없는 음극으로 이온을 수송시켜 스퍼터링을 일으킨다. 따라서 강자성체 재료의 스퍼터링이 가능하며, 90% 이상의 타겟 사용 효율 구현 및 기존 마그네트론 스퍼터링 대비 고속 증착이 가능하다. 또한, $10^{-4}$ Torr 압력영역에서 방전 및 스퍼터링이 가능하다. 타겟 이온 전류를 타겟 인가 전압과 관계없이 0~4 A까지, 타겟 이온 전류와 상관없이 타겟 인가 전압을 70~1,000 V 이상까지 독립적으로 제어가능하다. 또한 TiN과 같은 질소 반응성 공정에서 반응성 가스인 질소를 40%까지 넣어도 타겟에 수송되는 이온의 양에 영향이 없다. 할로우 음극 방전 전류 40 A에서 발생된 플라즈마의 이온에너지 분포는 55 eV에서 가우시안 분포를 보였으며, 플라즈마 포텐셜인 sheath drop은 74 V 였다. OES를 통한 광학적 진단 결과, 전자석에 의한 이온빔 초점에 따라 플라즈마 이온화율을 1.8배까지 증가시킬 수 있으며, 할로우 음극 방전 전류가 60~100 A로 증가하면서 플라즈마 이온화율을 6배까지 증가 가능하다. 또한, 타겟 이온 전류와 관계없이 타겟 인가 전압을 300~800 V로 증가시킴에 따라 Ar 이온 밀도의 경우 1.4배 증가, Ti 이온 밀도의 경우 2.2배 증가시킬 수 있었으며, TiN의 경우 증착 속도도 16~44 nm/min으로 제어가 가능하다.
본 연구는 산업계 및 학계에서 많은 연구와 응용이 이루어지고 있는 스퍼터링 기술에 관한 것으로, 타겟의 사용효율 및 스퍼터링된 입자의 이온화, 에너지 증대의 관점에서 새로운 방식으로 접근한 스퍼터링 기술에 관한 것이다. 본 공정 연구는 기존의 마그네트론 스퍼터링과는 달리, 독립적인 플라즈마를 생성하고 이를 (-)전압이 인가된 스퍼터링 타겟으로 유도하여 2차 방전을 일으킴과 동시에 생성 입자의 이온화 및 에너지 가능하도록 한 것이다. 플라즈마 발생부에서는 $10^{13}cm^{-3}$ 이상의 고밀도 Ar 플라즈마를 생성하고, 이를 자장을 통하여 스퍼터링 타겟으로 균일하게 수송하며, 스퍼터링 전극에 인가된 (-)전압에 의하여 이온들이 스퍼터링을 발생시킨다. 스퍼터링 전류는 생성된 플라즈마 발생부의 방전전류에만 비례하며, 스퍼터링에 인가되는 전압과는 독립적으로 작용 가능하다. 그리고 기판의 박막 증착률은 스퍼터링 전류에 보다는, 스퍼터링 타겟에 인가한 전압에 따라 변화하며, 기판에 도달하는 이온의 전류 및 입자의 량은 플라즈마 발생부의 플라즈마 전류량과 인가 스퍼터링 전압에 관계하여 변한다. 이 방식으로 이용할 경우, 스퍼터링된 입자의 양과 이온화률을 독립적으로 제어할 수 있어, 기존의 마그네트론 스퍼터링 공정 대비하여 더 넓은 공정 윈도우를 확보하는 것이 가능하며, 또한 기존 마그네트론 스퍼터링에서 문제가 되고 있는 타겟 사용 효율을 높일 수 있는 가능성을 볼 수 있었다.
본 논문에서는 침대평판 전극구조를 구성하여 침전극에 직류 정 ·부 고전압을 인가한 경우 전계와 자계가 직각방향으로 형성되도록 하고 자계가 코로나 방전현상에 미치는 영향을 측정하고 분석하였다. 정의 고전압을 인가한 경우 자계인가에 의해 방전코로나 영역이 확장되고 이때 흐르는 코로나전류가 감소하였고, 절연파괴전압은 증가되었다. 그러나 부의 고전압을 인가한 경우는 방전코로나 영역이 오히려 축소되고 흐르는 전류가 증가되었으며 절연파괴전압은 감소되었다. 이는 전자계가 동시에 존재하는 영역에서 코로나방전에 의해 생성된 전하들의 로렌쯔력에 의한 싸이크로트론 운동 때문인 것으로 생각된다.
작은 직경의 외부 전극 형광램프와 냉음극 형광램프는 LCD-TV의 광원으로 사용하고 있다. 교류 전압으로 구동되는 외부전극 형광램프와 교류 및 직류 전압으로 구동되는 냉음극 형광램프에서 광 방출 신호를 관측하였다. 이러한 빛은 양광주의 고전압부에서 접지부로 $10^5-10^6\;m/s$의 속도로 전파한다. 램프에서 방출된 광이 양광주를 따라 전파하는 현상은 일반 형광등과 네온싸인관에서도 동일하게 관측된다. 이러한 빛의 전파 현상은 지난 70년의 형광 램프 역사상 처음 관측되었다. 양광주 영역의 플라즈마는 높은 전압과 수 십 kHz가 인가되는 전극부에서 발생한 고밀도 플라즈마의 확산으로 생성된다. 고전압이 인가된 전극부에서 발생한 고밀도의 플라즈마는 인가되어지는 구동 주파수에 해당하는 섭동으로 작용하여 플라즈마 파동으로 양광주 영역으로 전파된다. 이러한 플라즈마 파동은 고밀도 전극부에서 저밀도 양광주 영역으로 플라즈마 밀도의 차이에 의하여 된다. 이때 파동의 전파 속도는 관 전류에 따라 달라진다. 타운젠트 방전 이전의 저 전류일 때는 ${\sim}10^5\;m/s$이며, 타운젠트 방전 이후 글로우 방전에서의 전파 속도는 ${\sim}10^6\;m/s$로 증가한다. 또한 타운젠트 방전 이전의 저 전류에서는 파동이 감쇠하는 경향을 보이며, 고 전류에서의 파동의 감쇠는 매우 작다. 관측된 광신호의 결과로부터 전파되는 파동의 원인은 플라즈마 확산에 의한 밀도의 차이에 의한 것으로 해석된다. 즉, 수 십 kHz의 구동 주파수를 갖는 플라즈마 파동이 양광주의 플라즈마 밀도 구배에 의하여 전파된다. 이러한 파동은 높은 전압이 인가되는 전극부에서 낮은 전압부로 향하는 조류의 흐름과 같이 나타난다.
Saddle field ion source는 구조가 간단하고 영구자석을 사용하지 않아 소형화에 유리하고 구조가 간단한 DC 파워서플라이를 이용하기 때문에 장치 가격이 저렴하여 다양한 분야에서 응용되고 있으며 특히 이온빔 밀링 분야에 많이 사용된다. 초기 saddle field ion source 는 대칭형의 구형이었으나 지속적인 연구 개발로 와이어형, 원판형, 원통형 등 다양한 형태의 saddle field ion source가 개발되었다. 본 연구에서는 비교적 제작이 용이하고, 구조적으로 외부간섭에 대하여 덜 민감한 원통형 saddle field ion source를 제작하였다. 초기 saddle field ion source는 이온원 내부에 saddle field를 형성하기 위하여 대칭 구조를 가지 형태로 제작되었으나, 비대칭 구조에서도 saddle field가 형성될 수 있고 비대칭 구조를 채택할 경우 한쪽으로 더 많은 이온빔을 인출할 수 있기 때문에 실제 응용면에서는 비대칭 구조가 더 유리하다. 따라서 본 연구에서는 원통형 비대칭 saddle field ion source를 제작하였으며, 제작된 이온소스는 높이가 62 mm 지름이 55 mm의 소형 이온소스였다. 제작된 원통형 saddle field ion source는 진공도와 가속전압에 따라 방전 모드 변화하였다. Saddle field ion source는 전극과 extractor의 구조에 따라 조금씩 다르지만 대체로 5x10-5 Torr ~ 5x10-4 Torr 영역에서 안정적으로 작동하였다. 이온소스 내부의 압력이 높을 경우 수십 mA 의 방전 전류가 흐르는 고전류 방전 모드로 작동하였으며 압력이 낮을 경우에는 동일한 전압에서 수 mA 의 방전 전류만 흐르는 저전류 방전 모드로 작동하였다. 압력이 더 높아질 경우 아크 방전이 발생하여 이온소스의 작동이 불안정하여 연속적인 작동이 어려웠다. 고전류 방전 모드에서는 이온빔 전류가 Child-Langmuir 방정식에 따라 Vi3/2에 비례하여 증가하는 경향을 보여주었으며 저전류 방전 모드에서는 Vi에 선형적으로 증가하였다. 가속 전압이 동일한 경우 고전류 방전 모드가 저전류 방전 모드에 비하여 더 많은 이온빔 인출이 가능하지만, 고전류 방전 모드의 경우 이온의 방출 각도가 매우 넓은 반면 저전류 방전 모드에서는 이온빔의 퍼짐이 현저히 줄어듦을 관찰할 수 있었다. 원통형 saddle field ion source는 내부 구조가 간단하기 때문에 내부 전극의 구조 변화에 따라 방전 특성 및 이온빔 인출 특성이 심하게 변동하였다. Saddle field ion source에서는 Anode에 인가되는 방전 전압이 가속 전압과 같은 역할을 하는데 가속 전압은 2~10 kV 사이에서 인가가 가능하였다. 일반적으로 동일한 방전 모드에서 진공도가 높아질수록 방전 전류의 양과 인출되는 이온의 양이 증가하는 것이 관찰되었다. 제작된 이온소스는 최적 조건에서 5 mm 인출구를 통하여 0.7 mA의 이온빔 인출이 가능하였으며, 9 mm 인출구를 사용한 경우 1 mA까지 이온빔 인출이 가능하였다.
본 연구는 AC 전원을 인가하여 좁은 전 극간격에서 고수율을 얻을 수 있는 연면방전방식 (Surface Discharge type)과 DC 전원을 인가하여 넓은 전극간격에서 저수율을 가지는 DC방전방식(DC Discharge type)을 중첩방전 할 수 있도록 중첩방전관을 설계 제작하여 각각 독립적인 방전방식을 적용하였을 때의 방전전압, 방전전류, 방전전력 및 오존생성농도를 실험적으로 조사하고, 두 방전방식을 동일공간에 중첩방전하여, 위 실험을 반복하고 중첩방전이 동일방전공간에 투입에너지 밀도를 높임으로써 방전특성 및 오존생성 특성을 비교 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.