• Title/Summary/Keyword: 방전시간

Search Result 541, Processing Time 0.028 seconds

Parametric Analysis of the Electric and Magnetic Field Waveforms Produced by Intracloud Lightning Discharges (운방전에 의해 발생한 전계와 자계 파형의 파라미터 분석)

  • Lee, Bok-Hee;Lee, Woo-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • In this study, the electric and magnetic fields measuring system were designed and fabricated to investigate the electric characteristics of lightning discharges. Frequency bandwidth of electric field measuring system ranges from 40[Hz] to 2.6[MHz] and its response characteristic is 2.1[(V/m)/mV]. Frequency bandwidth of magnetic field measuring system ranges from 300[Hz] to 1[MHz] and its response characteristic is 2.8[nT/mV]. Electric and magnetic fields due to intracloud lightning discharges were observed and their waveform parameters were statistically analyzed. As a result, waveform parameters of electric and magnetic fields are nearly independent of polarity. The mean rise times and the zero-crossing times of electric and magnetic fields are approximately $5.5[{\mu}s]\;and\;21[{\mu}s]$, respectively.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Effects of Hydroxy Silicone Oil on Insulation Properties of Silicone Rubber (Hydroxy Silicone Oil이 실리콘 고무의 절연특성에 마치는 영향)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Kim, Dae-Whan;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.51-54
    • /
    • 2002
  • 폴리머 애자용 Shed 재료의 전기방전에 대한 열화내성과 표면발수성은 제품의 장기성능에 있어서 가장 중요한 물성들이다. 그러나 무기보강재의 첨가량이 많아 무결점 성형성을 만족하도록 하기 위해서 Process Oil의 사용이 불가피한데 사용하는 오일의 종류와 양에 따라 옥외절연물의 장기성능에 영향을 주는 표면발수성이나 방전내성은 크게 차이가 나는 것으로 밝혀져 있다. 본 논문에서는 화학적 구조와 점도가 다른 몇 종의 hydroxy silicone oil(HS 오일)을 혼련 (kneading) 하는 과정에 첨가하여 이들 오일의 종류와 양이 고무의 기본적인 물성, 발수성, 방전열화내성, 내트래킹성 등에 어떻게 영향을 주는가를 조사하였다. 코로나 처리시간에 따라서 접촉각의 저하정도와 코로나 처리 후 경과시간에 따른 발수성의 회복특성을 조사하였다. HS 오일의 접도에 따라 초기발수성, 발수성 회복특성의 차이가 많았다. 점도가 낮을수록 초기 발수성 저하는 크며 회복속도는 빠른 반면 점도가 높을수록 초기 발수성 저하는 작은 반변은 발수성 회복속도는 다소 느리게 나타났다 내트래킹성 결과는 점도가 높을수록 우수한 특성을 보였다. 결론적으로 폴리머 애자용 실리콘고무의 컴파운딩에서 실리콘오일의 선택은 성형작업성, 발수성회복특성, 열화내성 외에 가격 등을 고려하여 최적화가 필요하다.

  • PDF

Studies on decomposition of solvent for lithium-ion battery (리튬 이온 전지의 용매 분해 반응에 대한 연구)

  • Chung Kwang-il;Choi Byeong-doo;Kim Shin-Kook;Kim Woo-Seong;Choi Yong-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • The electrochemical behavior of film and charge-discharge capacity of Li-ion cell in 1 M $LiPF_6/EC:DME$ (1 : 1, by volume ratio) electrolyte solution was studied using chronopotentiometry, cyclic voltammetry, chronoamperometry, and impedance spectroscopy. The first irreversible capacity was higher than the second irrversible capacity because of solvent decomposition. Especially, passivation film that is electron insulating and ionic conducting were formed on the MPCF by solvent decomposition during the first charge. The solvated Li is co-intercalated with solvent into MPCF electrode. Part of the MPCF is expoliated during co-intercalation of solvent-Li. The MPCF ends up nonuniformly covered by a relatively thick layer of exfoliated particles embedded in a matrix of product by solvent decomposition.

Electrochemical Properties of Sub-micron Size Si Anode Materials Distributed by Wet Sedimentation Method (습식 분급으로 입도 조절된 서브 마이크론 크기의 Si 음극활물질의 전기화학적 특성 분석)

  • Jin-Seong Seo;Hyun-Su Kim;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.39-44
    • /
    • 2023
  • In this study, the particle size of Si polycrystals was controlled through wet-sedimentation method, and changes in the capacity and cyclic characteristics of the Si anode material according to the particle size were observed. After wet-sedimentation of Si particles pulverized by a vibration mill, the non-uniform particle distribution of Si was uniformly controlled. The d50 of a sample in which Si was sedimented for 24 hours decreased to 0.50 ㎛. As a result of the electrochemical characteristic analysis, the Rct value representing the resistance in the electrode was significantly reduced due to the decrease in particle size. The unclassified Si sample exhibited a discharge capacity of 2,869 mAh/g in the first cycle, and decreased to 85.7 mAh/g after 100 cycles. The sample in which Si was classified for 24 hours showed a capacity of 3,394 mAh/g initially, and maintained a capacity of 1,726 mAh/g after 100 cycles. As the size of the Si particles decreased, the discharge capacity increased and the cycle life was also increased.

Analysis of Underwater Discharge Characteristics Caused by Impulse Voltages (임펄스전압에 의한 수증방전특성의 분석)

  • Choi, Jong-Hyuk;An, Sang-Duk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • This paper describes underwater discharge phenomena and breakdown characteristics in case that the standard lightning impulse voltage is injected to the needle and spherical electrodes installed in the hemisphere water tank. The objective of this work is to understand the basic features related to transient ground impedance against lightning surges. The discharge luminous images were observed and the dependence of breakdown voltage on the polarity of applied voltage and water resistivity were investigated. As a consequence, streamer corona is initiated at the tip of needle and spherical electrodes and is propagated toward grounded tank with stepwise extension. The breakdown voltage characteristics measured as a function of water resistivity showed V-shaped curves. Breakdown voltage and time curve of needle electrode is higher than that of spherical electrode.

Machining Characteristics According to the Thickness Change When Wire-cut Electrical Discharge Machining of Tungsten Carbide (초경합금재 와이어컷 방전가공시 두께변화에 따른 가공 특성)

  • 이재명;김원일;이윤경;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.820-823
    • /
    • 2000
  • The characteristics of wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of tungsten carbide in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension, the gap of deflection was decreased after thickness 60mm and discharge time of 6$\mu\textrm{s}$ due to the changing from fundamental mode to vibration mode. The deflection is the smallest at the water specific resistivity of 7.5 kΩ ㆍcm. The deflection is found to be decreased as increasing dwell time, and the result is due to the vibration of the pressure and the amount of the dielectric. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, was observed for rough wire-cutting EDM of STD-11. This phenomena is found to be decreased as the number of EDM is increased. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Characteristics of Surface Morphology According to the Pulse Change When Wire-cut Electrical discharge Machining (와이어컷 방전가공시 펄스변화에 따른 표면형상 특성)

  • 이재명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.537-542
    • /
    • 2000
  • Wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of STD-11 in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension. The deflection is the smallest at the speed of wire of 10.6m/min and the water specific resistivity of 5k$\Omega$.cm. The deflection is found to be decreased as increasing dwell time. But if the water pressure is high, it is found not to be changed after the vibration of 4sec. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, is observed for rough wire-cutting EDM of STD-11. This phenomena is found to be similar in spite of the change of EDM energy level. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines (점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF